[1] Kumar D.P., Amgoth T. and Annavarapu C.S.R., 2019. Machine learning algorithms for wireless sensor networks: A survey.Information Fusion, 49, pp.1-25. [2] Borkar G.M., Patil L.H., Dalgade D. and Hutke A., 2019. A novel clustering approach and adaptive SVM classifier for intrusion detection in WSN: A data mining concept.Sustainable Computing: Informatics and Systems, 23, pp.120-135. [3] Jacob, I.J. and Darney, P.E., 2021. Artificial bee colony optimization algorithm for enhancing routing in wireless networks. Journal of Artificial Intelligence,3(01), pp.62-71. [4] Cauteruccio F., Fortino G., Guerrieri A., Liotta A., Mocanu D.C., Perra C., Terracina G. and Vega M.T., 2019. Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance.Information Fusion, 52, pp.13-30. [5] Han L., Zhou M., Jia W., Dalil Z. and Xu X., 2019. Intrusion detection model of wireless sensor networks based on game theory and an autoregressive model.Information sciences, 476, pp.491-504. [6] Jin X., Liang J., Tong W., Lu L. and Li Z., 2017. Multi-agent trust-based intrusion detection scheme for wireless sensor networks.Computers & Electrical Engineering, 59, pp.262-273. [7] Kalnoor, G. and Agarkhed, J., 2018. Detection of intruder using KMP pattern matching technique in wireless sensor networks.Procedia Computer Science, 125, pp.187-193. [8] Santoro D., Escudero-Andreu G., Kyriakopoulos K.G., Aparicio-Navarro F.J., Parish D.J. and Vadursi M., 2017. A hybrid intrusion detection system for virtual jamming attacks on wireless networks.Measurement, 109, pp.79-87. [9] Gavel S., Raghuvanshi A.S. and Tiwari S., 2021. A novel density estimation based intrusion detection technique with Pearson’s divergence for wireless sensor networks.ISA transactions, 111, pp.180-191. [10] Jinhui X., Yang T., Feiyue Y., Leina P., Juan X. and Yao H., 2018. Intrusion detection system for hybrid DoS attacks using energy trust in wireless sensor networks.Procedia computer science, 131, pp.1188-1195. [11] Osanaiye O.A., Alfa A.S. and Hancke G.P., 2018. Denial of service defence for resource availability in wireless sensor networks.IEEE Access, 6, pp.6975-7004. [12] Mehmood A., Khanan A., Umar M.M., Abdullah S., Ariffin K.A.Z. and Song H., 2017. Secure knowledge and cluster-based intrusion detection mechanism for smart wireless sensor networks.IEEE Access, 6, pp.5688-5694. [13] Alaparthy, V.T. and Morgera, S.D., 2018. A multi-level intrusion detection system for wireless sensor networks based on immune theory.IEEE Access, 6, pp.47364-47373. [14] Wang W., Huang H., Li Q., He F. and Sha C., 2020. Generalized intrusion detection mechanism for empowered intruders in wireless sensor networks.IEEE Access, 8, pp.25170-25183. [15] Miranda C., Kaddoum G., Bou-Harb E., Garg S. and Kaur K., 2020. A collaborative security framework for software-defined wireless sensor networks.IEEE Transactions on Information Forensics and Security, 15, pp.2602-2615. [16] Gouda H.A., Ahmed M.A. and Roushdy M.I., 2024. Optimizing anomaly-based attack detection using classification machine learning. Neural Computing and Applications,36(6), pp.3239-3257. [17] Douiba M., Benkirane S., Guezzaz A. and Azrour M., 2023. An improved anomaly detection model for IoT security using decision tree and gradient boosting. The Journal of Supercomputing,79(3), pp.3392-3411. [18] Al Ghamdi, M.A., 2023. Analyze textual data: deep neural network for adversarial inversion attack in wireless networks.SN Applied Sciences, 5(12), p.386. |