[1] Ali S., Tong D., Xu Z.T., Henchiri M., Wilson K., Siqi S. and Zhang J., 2019. Characterization of drought monitoring events through MODIS-and TRMM-based DSI and TVDI over South Asia during 2001-2017.Environmental Science and Pollution Research, 26, pp.33568-33581. [2] Wei W., Pang S., Wang X., Zhou L., Xie B., Zhou J. and Li C., 2020. Temperature vegetation precipitation dryness index (TVPDI)-based dryness-wetness monitoring in China. Remote Sensing of Environment, 248, p.111957. [3] Vicente-Serrano S.M., Quiring S.M., Peña-Gallardo M., Yuan S. and Domínguez-Castro F., 2020. A review of environmental droughts: Increased risk under global warming?. Earth-Science Reviews, 201, p.102953. [4] Prodhan F.A., Zhang J., Yao F., Shi L., Pangali Sharma T.P., Zhang D., Cao D., Zheng M., Ahmed N. and Mohana H.P., 2021. Deep learning for monitoring agricultural drought in South Asia using remote sensing data.Remote Sensing, 13(9), p.1715. [5] Ren, J.C. and Zhang, T.T., 2021. Evolution Characteristics of Drought and Flood in Shandong Province in Recent 45 Years Based on Standardized Precipitation Index. Res.Soil Water Conserv, 28, pp.149-154. [6] Li Y., Wang B. and Gong Y., 2022. [Retracted] Drought Assessment Based on Data Fusion and Deep Learning.Computational Intelligence and Neuroscience, 2022(1), p.4429286. [7] Raza M.A., Almazah M.M., Ali Z., Hussain I. and Al-Duais F.S., 2022. Application of extreme learning machine algorithm for drought forecasting.Complexity, 2022(1), p.4998200. [8] Wang, X. and Wang, Z., 2022. [Retracted] Analysis and Evaluation of Ecological Environment Monitoring Based on PIE Remote Sensing Image Processing Software.Journal of Robotics, 2022(1), p.1716756. [9] Wang, X. and Xu, G., 2021. Deep Learning Based on Wireless Remote Sensing Model for Monitoring the Solar System Inverter.Complexity, 2021(1), p.5561975. [10] Shalishe A., Bhowmick A. and Elias K., 2022. Meteorological drought monitoring based on satellite CHIRPS product over Gamo Zone, Southern Ethiopia.Advances in Meteorology, 2022(1), p.9323263. [11] Yuan H., Huang Q., Lu Q., Yang H. and Lu W.J., 2022. [Retracted] Environmental Healthcare Assessment via Daily‐Scale Drought Monitoring.Journal of Healthcare Engineering, 2022(1), p.5010760. [12] Zhang D., Cao W. and Qi B., 2021. Identifying Influencing Factors of Regional Agricultural Drought Vulnerability Based on PSR‐TGRC Method.Mathematical Problems in Engineering, 2021(1), p.9933152. [13] Wu L., Zhang Y., Wang L., Xie W., Song L., Zhang H., Bi H., Zheng Y., Zhang Y., Zhang X. and Li Y., 2022. Analysis of 22‐year Drought Characteristics in Heilongjiang Province Based on Temperature Vegetation Drought Index.Computational Intelligence and Neuroscience, 2022(1), p.1003243. [14] Haigh T.R., Otkin J.A., Mucia A., Hayes M. and Burbach M.E., 2019. Drought early warning and the timing of range managers’ drought response.Advances in Meteorology, 2019(1), p.9461513. [15] Dhinakaran M., Phasinam K., Alanya-Beltran J., Srivastava K., Babu D.V. and Singh S.K., 2022. [Retracted] A System of Remote Patients’ Monitoring and Alerting Using the Machine Learning Technique.Journal of Food Quality, 2022(1), p.6274092. [16] Kale R.S., Hase J., Deshmukh S., Ajani S.N., Agrawal P.K. and Khandelwal C.S., 2024. Ensuring data confidentiality and integrity in edge computing environments: A security and privacy perspective.Journal of Discrete Mathematical Sciences and Cryptography, 27, pp.421-430. [17] Agrawal P.K.,2023. A Novel Mapper Machine Learning Algorithm for Semantic Domain Mapping for Domain Database Updation.SN Computer Science, 4(5), p.536. [18] Feng P., Wang B., Li Liu D. and Yu Q., 2019. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia.Agricultural Systems, 173, pp.303-316. [19] Liu Q., Zhang J., Zhang H., Yao F., Bai Y., Zhang S., Meng X. and Liu Q., 2021. Evaluating the performance of eight drought indices for capturing soil moisture dynamics in various vegetation regions over China. Science of the Total Environment, 789, p.147803. [20] Yao N., Li Y., Liu Q., Zhang S., Chen X., Ji Y., Liu F., Pulatov A. and Feng P., 2022. Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes. Agricultural Water Management, 266, p.107566. [21] Shi S., Yao F., Zhang J. and Yang S., 2020. Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia.Ieee Access, 8, pp.30050-30059. |