[1] Kaur G., Singh N. and Kumar M., 2023. Image forgery techniques: a review. Artificial Intelligence Review, 56(2), pp.1577-1625. [2] Thakur, R. and Rohilla, R., 2020. Recent advances in digital image manipulation detection techniques: A brief review. Forensic science international, 312, p.110311. [3] Rani, P.S. and Kumar, A., 2019, June. Digital image forgery detection techniques: A comprehensive review. In 2019 3rd International conference on electronics, communication and aerospace technology (ICECA)(pp. 959-963). IEEE. [4] Meena, K.B. and Tyagi, V., 2019. Image forgery detection: survey and future directions. Data, Engineering and Applications: Volume 2, pp.163-194. [5] Abidin A.B.Z., Majid H.B.A., Samah A.B.A. and Hashim H.B., 2019, December. Copy-move image forgery detection using deep learning methods: a review. In 2019 6th international conference on research and innovation in information systems (ICRIIS)(pp. 1-6). IEEE. [6] Parveen A., Khan Z.H. and Ahmad S.N., 2019. Block-based copy-move image forgery detection using DCT. Iran Journal of Computer Science, 2, pp.89-99. [7] Meena, K.B. and Tyagi, V., 2021. Image splicing forgery detection techniques: A review. In Advances in Computing and Data Sciences: 5th International Conference, ICACDS 2021, Nashik, India, April 23-24, 2021, Revised Selected Papers, Part II 5 (pp. 364-388). Springer International Publishing. [8] Ernawati M., Ernawan F., Abbker Y., Fakhreldin M. and Adi P.W., 2022, September. Image Splicing Forgery Approachs: A Review and Future Direction. In 2022 6th International Conference on Informatics and Computational Sciences (ICICoS)(pp. 134-139). IEEE. [9] Ahmed B., Aaron Gulliver T. and alZahir S., 2021. Localization and detection of copy-move forgeries in post-processed images using U-Net. SN Computer Science, 2(6), p.476. [10] Deep Kaur, C. and Kanwal, N., 2019. An analysis of image forgery detection techniques. Statistics, Optimization & Information Computing, 7(2), pp.486-500. [11] Dong J., Wang W. and Tan T., 2013, July. Casia image tampering detection evaluation database. In 2013 IEEE China summit and international conference on signal and information processing (pp. 422-426). IEEE. [12] Wu Y., Abd-Almageed W. and Natarajan P., 2018. Busternet: Detecting copy-move image forgery with source/target localization. In Proceedings of the European conference on computer vision (ECCV)(pp. 168-184). [13] Ahmed B., Gulliver T.A. and alZahir S., 2020. Image splicing detection using mask-RCNN. Signal, Image and Video Processing, 14(5), pp.1035-1042. [14] Bibi S., Abbasi A., Haq I.U., Baik S.W. and Ullah A., 2021. Digital image forgery detection using deep autoencoder and CNN features. Hum. Cent. Comput. Inf. Sci, 11, pp.1-17. [15] Jain A., Sharma A., Gupta K., Likhi K., Mehra N., Shrivastava S. and Joshi D., Image Forgery Detection using CNN. [16] Ali S.S., Ganapathi I.I., Vu N.S., Ali S.D., Saxena N. and Werghi N., 2022. Image forgery detection using deep learning by recompressing images. Electronics, 11(3), p.403. [17] Tyagi, S. and Yadav, D., 2023. MiniNet: a concise CNN for image forgery detection. Evolving Systems, 14(3), pp.545-556. [18] Katiyar, A. and Bhavsar, A., 2022. Image forgery detection with interpretability. arXiv preprint arXiv:2202.00908. [19] Nida N., Irtaza A. and Ilyas N., 2021, January. Forged face detection using ELA and deep learning techniques. In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST)(pp. 271-275). IEEE. [20] Sudiatmika I.B.K., Rahman F., Trisno T. and Suyoto S., 2019. Image forgery detection using error level analysis and deep learning. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(2), pp.653-659. [21] Mallick D., Shaikh M., Gulhane A. and Maktum T., 2022. Copy move and splicing image forgery detection using cnn. In ITM Web of Conferences (Vol. 44, p. 03052). EDP Sciences. [22] Patekar S., Khan S., Bhusare D., Mhujbal M., Hegde G., 2023. Image forgery detection, Journal for Basic Sciences. 23(4), p.114-121. [23] Singh, A. and Singh, J., 2021, August. Image forgery detection using deep neural network. In 2021 8th International conference on signal processing and integrated networks (SPIN)(pp. 504-509). IEEE. [24] Kumar A., Tiwari N. and Chawla M., 2023. Regularized CNN Model for Image Forgery Detection. Advances in Science and Technology, 124, pp.762-771. [25] Prabakar D., Ganesan R., Rani D.L., Neti P., Kalyani N. and Mudradi S.K., 2022, November. Hybrid deep learning model for copy move image forgery detection. In 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) [26] PATEL, J.J. and BHATT, N.S., 2022. Copy-Move Forgery Detection-A Hybrid Approach. Journal of Engineering Science and Technology, 17(3), pp.2000-2019. [27] El_Tokhy M.S.,2023. Development of precise forgery detection algorithms in digital radiography images using convolution neural network. Applied Soft Computing, 138, p.110174. [28] Begum S. M.,Tabassum S. A., Roshan S., Jaziba S., Esther V. M., Sumayabhanu S., 2023. Fusion-based decision approach for image forgery detection using deep lightweight models, Journal of Critical Reviews, 10(03), p.22-31. [29] Anwar M.A., Tahir S.F., Fahad L.G. and Kifayat K., 2023. Image forgery detection by transforming local descriptors into deep-derived features. Applied Soft Computing, 147, p.110730. [30] Abd Warif N.B., Idris M.Y.I., Wahab A.W.A. and Salleh R., 2015, August. An evaluation of Error Level Analysis in image forensics. In 2015 5th IEEE international conference on system engineering and technology (ICSET)(pp. 23-28). IEEE. [31] Maamouli K., Benhamza H., Djeffal A. and Cheddad A., 2022, December. A CNN based architecture for forgery detection in administrative documents. In 2022 International Symposium on iNnovative Informatics of Biskra (ISNIB)(pp. 1-6). IEEE. [32] Zhou P., Han X., Morariu V.I. and Davis L.S., 2017, July. Two-stream neural networks for tampered face detection. In 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW)(pp. 1831-1839). IEEE. [33] Kadam K.D., Ahirrao S. and Kotecha K., 2021. Multiple image splicing dataset (MISD): a dataset for multiple splicing. Data, 6(10), p.102. [34] Handelman G.S., Kok H.K., Chandra R.V., Razavi A.H., Huang S., Brooks M., Lee M.J. and Asadi H., 2019. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. American Journal of Roentgenology, 212(1), pp.38-43. |