A gain-flatness optimization solution for feedback technology of wideband low noise amplifiers | Frontiers of Information Technology & Electronic Engineering Skip to main content
Log in

A gain-flatness optimization solution for feedback technology of wideband low noise amplifiers

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The S parameter expression of high-frequency models of the high electron mobility transistors (HEMTs) with basic feedback structure, especially the transmission gain S 21, is presented and analyzed. In addition, an improved feedback structure and its theory are proposed and demonstrated, in order to obtain a better gain-flatness through the mutual interaction between the series inductor and the parallel capacitor in the feedback loop. The optimization solution for the feedback amplifier can eliminate the negative impacts on transmission gain S 21 caused by things such as resonance peaks. Furthermore, our theory covers the shortage of conventional feedback amplifiers, to some extent. A wideband low-noise amplifier (LNA) with the improved feedback technology is designed based on HEMT. The transmission gain is about 20 dB with the gain variation of 1.2 dB from 100 MHz to 6 GHz. The noise figure is lower than 2.8 dB in the whole band and the amplifier is unconditionally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahl, I., Bhartia, P., 2006. Microwave Solid State Circuit Design (2nd Ed.). Publishing House of Electronics Industry, Beijing, China, p.366–378 (in Chinese).

    Google Scholar 

  • Barras, D., Ellinger, F., Jackel, H., Hirt, W., 2004. A low supply voltage SiGe LNA for ultra-wideband frontends. IEEE Microw. Wirel. Compon. Lett., 14(10):469–471. [doi:10.1109/LMWC.2004.834556]

    Article  Google Scholar 

  • Fu, C.T., Kuo, C.N., Taylor, S.S., 2010. Low noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching. IEEE Trans. Microw. Theory Techn., 58(4):795–806. [doi:10.1109/TMTT.2010.2041570]

    Article  Google Scholar 

  • Gharpurey, R., 2004. A Broadband Low-Noise Front-End Amplifier for Ultra Wideband in 0.13-μm CMOS. Proc. IEEE Custom Integrated Circuits Conf., p.605–608. [doi:10.1109/CICC.2004.1358898]

  • Gonzalez, G., 2006. Microwave Transistor Amplifiers Analysis and Design (2nd Ed.). Publishing House of Tsinghua University, Beijing, China, p.366–378 (in Chinese).

    Google Scholar 

  • Ismail, A., Abidi, A.A., 2004. A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J. Sol.-State Circ., 39(12):2269–2277. [doi:10.1109/JSSC.2004.836344]

    Article  Google Scholar 

  • Kim, C.W., Kang, M.S., Anh, P.T., Kim, H.T., Lee, S.G., 2005. An ultra wideband CMOS low-noise amplifier for 3-5-GHz UWB system. IEEE J. Sol.-State Circ., 40(2): 544–547. [doi:10.1109/JSSC.2004.840951]

    Article  Google Scholar 

  • Lee, J., Cressler, J.D., 2005. A 3–10 GHz SiGe Resistive Feedback Low Noise Amplifier for UWB Applications. IEEE Radio Frequency Integrated Circuits Symp., p.545–548. [doi:10.1109/RFIC.2005.1489871]

  • Li, Q., Zhang, Y.P., 2007. A 1.5-V 2-9.6-GHz inductorless low-noise amplifier in 0.13-μm CMOS. IEEE Trans. Microw. Theory Techn., 55(10):2015–2023. [doi:10.1109/TMTT.2007.905495]

    Article  Google Scholar 

  • Park, Y., Lee, C.H., Cressler, J.D., Laskar, J., Joseph, A., 2005. A Very Low Power SiGe LNA for UWB Application. IEEE MTT-S Int. Microwave Symp., p.1041–1044. [doi:10.1109/MWSYM.2005.1516847]

  • Roy, S., Foerster, J.R., Somayazulu, V.S., Leeper, D.G., 2004. Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity. Proc. IEEE, 92(2):295–311. [doi:10.1109/JPROC.2003.821910]

    Article  Google Scholar 

  • Scholtz, R.A., Weaver, R., Homier, E., Lee, J., Hilmes, P., Taha, A., Wilson, R., 2000. UWB Radio Deployment Challenges. 11th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.620–625. [doi:10.1109/PIMRC.2000.881497]

  • Wang, H., Dow, G.S., Allen, B.R., Ton, T.N., Tan, K.L., Chang, K.W., Chen, T.H., Berenz, J., Lin, T.S., Liu, P.H., et al., 1992. High-performance in W-band monolithic pseudomorphic InGaAs HEMT LNA’s and design/analysis methodology. IEEE Trans. Microw. Theory Techn., 40(3): 417–428. [doi:10.1109/22.121716]

    Article  Google Scholar 

  • Win, M.Z., Scholtz, R.A., 1998. Impulse radio: how it works. IEEE Commun. Lett., 2(2):36–38. [doi:10.1109/4234.660796]

    Article  Google Scholar 

  • Xie, H.Y., Zhang, W.R., Li, J., Shen, P., Huang, Y.W., Huang, L., Hu, N., 2009. Study of Feedback Technology for Gain Flatness of UWB LNA. 3rd IEEE Int. Symp. on Microwave Antenna, Propagation and EMC Technologies for Wireless Communications, p.466–469. [doi:10.1109/MAPE.2009.5355634]

  • Zhan, J.H.C., Taylor, S.S., 2006. A 5GHz Resistive-Feedback CMOS LNA for Low-Cost Multi-standard Applications. IEEE Int. Solid-State Circuits Conf., p.721–730. [doi:10.1109/ISSCC.2006.1696111]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-jun Wei.

Additional information

Project supported by the Guangdong Key Technologies R & D Program (No. 2007B010400009) and the Guangzhou Science and Technology Pillar Program (No. 2008Z1-D501), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Zh., Guo, Bh., Wei, Zj. et al. A gain-flatness optimization solution for feedback technology of wideband low noise amplifiers. J. Zhejiang Univ. - Sci. C 12, 608–613 (2011). https://doi.org/10.1631/jzus.C1010300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1010300

Key words

CLC number

Navigation