Abstract
Global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding rendering. It is an active research field that has been developed over the past two decades. The deficiency of precise details and efficient rendering are still the main challenges of photon mapping. This report reviews recent work and classifies it into a set of categories including radiance estimation, photon relaxation, photon tracing, progressive photon mapping, and parallel methods. The goals of our report are giving readers an overall introduction to photon mapping and motivating further research to address the limitations of existing methods.
Similar content being viewed by others
References
Belcour, L., Soler, C., 2011. Frequency based kernel estimation for progressive photon mapping. Proc. SIGGRAPH Asia, p.47:1. http://dx.doi.org/10.1145/2073304.2073357
Benthin, C., Wald, I., Woop, S., et al., 2012. Combining single and packet-ray tracing for arbitrary ray distributions on the Intel MIC architecture. IEEE Trans. Visual. Comput. Graph., 18(9):1438–1448. http://dx.doi.org/10.1109/TVCG.2011.277
Chen, J.T., Ge, X.Y., Wei, L.Y., et al., 2013. Bilateral blue noise sampling. ACM Trans. Graph., 32(6):216.1–216.11. http://dx.doi.org/10.1145/2508363.2508375
Davidovic, T., Křivánek, J., Hašan, M., et al., 2014. Progressive light transport simulation on the GPU: survey and improvements. ACM Trans. Graph., 33(3):29.1–29.19. http://dx.doi.org/10.1145/2602144
Dmitriev, K., Brabec, S., Myszkowski, K., et al., 2002. Interactive global illumination using selective photon tracing. Proc. 13th Eurographics Workshop on Rendering, 2002:100–113.
Fabianowski, B., Dingliana, J., 2009. Interactive global photon mapping. Comput. Graph. Forum, 28(4):1151–1159. http://dx.doi.org/10.1111/j.1467-8659.2009.01492.x
Fallahpour, M., Lin, M.B., Lin, C.H., 2014. Parallel photonmapping rendering on a mesh-noc-based mpsoc platform. J. Parall. Distrib. Comput., 74(7):2626–2638. http://dx.doi.org/10.1016/j.jpdc.2014.03.005
Fan, S., Chenney, S., Lai, Y., 2005. Metropolis photon sampling with optional user guidance. Proc. Eurographics Symp. on Rendering, p.127–138.
Fradin, D., Meneveaux, D., Horna, S., 2005. Out-of-core photon-mapping for large buildings. Proc. Eurographics Symp. on Rendering, p.65–72.
Frisvad, J.R., Schjøth, L., Erleben, K., et al., 2014. Photon differential splatting for rendering caustics. Comput. Graph. Forum, 33(6):252–263. http://dx.doi.org/10.1111/cgf.12347
Frolov, A.A., Kharlamov, V.A., Galaktionov, K.A., et al., 2014. Multiple reference octrees for a GPU photon mapping and irradiance caching. Program. Comput. Softw., 40(4):208–214. http://dx.doi.org/10.1134/S0361768814040033
García, R., Ureña, C., Sbert, M., 2012. Description and solution of an unreported intrinsic bias in photon mapping density estimation with constant kernel. Comput. Graph. Forum, 31(1):33–41. http://dx.doi.org/10.1111/j.1467-8659.2011.02081.x
García, R., Ureña, C., Poch, J., et al., 2014. Overestimation and underestimation biases in photon mapping with non-constant kernels. IEEE Trans. Visual. Comput. Graph., 20(10):1441–1450. http://dx.doi.org/10.1109/TVCG.2014.2314665
Georgiev, I., Křivánek, J., DavidoviČ, T., et al., 2013. Light transport simulation with vertex connection and merging. Proc. 23rd Int. Conf. on Transport Theory, p.1–2.
Günther, J., Grosch, T., 2014. Distributed out-of-core stochastic progressive photon mapping. Comput. Graph. Forum, 33(6):154–166. http://dx.doi.org/10.1111/cgf.12340
Günther, J., Wald, I., Slusallek, P., 2004. Realtime caustics using distributed photon mapping. Proc. Eurographics Symp. on Rendering Techniques, p.111–121.
Hachisuka, T., Jensen, H.W., 2009. Stochastic progressive photon mapping. ACM Trans. Graph., 28(5):141.1–141.8. http://dx.doi.org/10.1145/1618452.1618487
Hachisuka, T., Jensen, H.W., 2010. Parallel progressive photon mapping on GPUs. Proc. ACM SIGGRAPH Asia, p.54.1. http://dx.doi.org/10.1145/1899950.1900004
Hachisuka, T., Jensen, H.W., 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph., 30(5):114.1–114.11. http://dx.doi.org/10.1145/2019627.2019633
Hachisuka, T., Ogaki, S., Jensen, H.W., 2008. Progressive photon mapping. ACM Trans. Graph., 27(5):130.1–130.8. http://dx.doi.org/10.1145/1409060.1409083
Hachisuka, T., Jarosz, W., Jensen, H.W., 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph., 29(6):144.1–144.12. http://dx.doi.org/10.1145/1882261.1866170
Hachisuka, T., Pantaleoni, J., Jensen, W.R., 2012. A path space extension for robust light transport simulation. ACM Trans. Graph., 31(6):191.1-191.10. http://dx.doi.org/10.1145/2366145.2366210
Havran, V., Bittner, J., Herzog, R., et al., 2005. Ray maps for global illumination. Proc. 16th Eurographics Conf. on Rendering Techniques, p.43–54. http://dx.doi.org/10.2312/EGWR/EGSR05/043-054
Herzog, R., Havran, V., Kinuwaki, S., et al., 2007. Global illumination using photon ray splatting. Comput. Graph. Forum, 26(3):503–513. http://dx.doi.org/10.1111/j.1467-8659.2007.01073.x
Igehy, H., 1999. Tracing ray differentials. Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques, p.179–186. http://dx.doi.org/10.1145/311535.311555
Jensen, H.W., 1995. Importance driven path tracing using the photon map. Proc. Eurographics Workshop on Rendering Techniques, p.326–335. http://dx.doi.org/10.1007/978-3-7091-9430-0_31
Jensen, H.W., 1996. Global illumination using photon maps. Proc. Eurographics Workshop on Rendering Techniques, p.21–30. http://dx.doi.org/10.1007/978-3-7091-7484-5_3
Jensen, H.W., 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, USA.
Jensen, H.W., Christensen, N.J., 1995. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph., 19(2):215–224. http://dx.doi.org/10.1016/0097-8493(94)00145-O
Kajiya, J.T., 1986. The rendering equation. Comput. Graph., 20(4):143–150. http://dx.doi.org/10.1145/15886.15902
Kang, C.M., Wang, L., Wang, P., et al., 2015. Coherent photon mapping on the Intel MIC architecture. J. Comput. Sci. Technol., 30(3):519–527. http://dx.doi.org/10.1007/s11390-015-1542-1
Kaplanyan, A.S., Dachsbacher, C., 2013. Adaptive progressive photon mapping. ACM Trans. Graph., 32(2):16.1–16.13. http://dx.doi.org/10.1145/2451236.2451242
Keller, A., Wald, I., 2000. Efficient importance sampling techniques for the photon map. Proc. Conf. on Vision, Modeling, and Visualization, p.271–278.
Keller, A., Fascione, L., Fajardo, M., et al., 2015. The path tracing revolution in the movie industry. Proc. ACM SIGGRAPH Courses, p.24.1–24.7. http://dx.doi.org/10.1145/2776880.2792699
Knaus, C., Zwicker, M., 2011. Progressive photon mapping: a probabilistic approach. ACM Trans. Graph., 30(3):25.1–25.13. http://dx.doi.org/10.1145/1966394.1966404
Křivánek, J., Georgiev, I., Hachisuka, T., et al., 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph., 33(4):70–79.
Lafortune, E.P., Willems, Y.D., 1993. Bi-directional path tracing. Proc. Computer Graphics, p.145–153.
Larsen, B.D., Christensen, N.J., 2004. Simulating photon mapping for real-time applications. Proc. 15th Eurographics Conf. on Rendering Techniques, p.123–131.
Lavignotte, F., Paulin, M., 2003. Scalable photon splatting for global illumination. Proc. 1st Int. Conf. on Computer Graphics and Interactive Techniques, p.203–210. http://dx.doi.org/10.1145/604471.604511
Liu, X.D., Zheng, C.W., 2014a. Adaptive importance photon shooting technique. Comput. Graph., 38:158–166. http://dx.doi.org/10.1016/j.cag.2013.10.027
Liu, X.D., Zheng, C.W., 2014b. Anisotropic progressive photon mapping. Proc. 5th Int. Conf. on Graphic and Image Processing, Article No. 90690C. http://dx.doi.org/10.1117/12.2050058
Ma, V.C.H., McCool, M.D., 2002. Low latency photon mapping using block hashing. Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, p.89–99.
Mara, M., Luebke, D., McGuire, M., 2013. Toward practical real-time photon mapping: efficient GPU density estimation. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.71–78. http://dx.doi.org/10.1145/2448196.2448207
McGuire, M., Luebke, D., 2009. Hardware-accelerated global illumination by image space photon mapping. Proc. Conf. on High Performance Graphics, p.77–89. http://dx.doi.org/10.1145/1572769.1572783
Myszkowski, K., 1997. Lighting reconstruction using fast and adaptive density estimation techniques. Proc. Eurographics Workshop on Rendering Techniques, p.251–262. http://dx.doi.org/10.1007/978-3-7091-6858-5_23
Parker, S.G., Bigler, J., Dietrich, A., et al., 2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph., 29(4):66.1–66.13. http://dx.doi.org/10.1145/1778765.1778803
Purcell, T.J., Donner, C., Cammarano, M., et al., 2003. Photon mapping on programmable graphics hardware. Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, p.41–50.
Roland, S., 2003. Bias compensation for photon maps. Comput. Graph. Forum, 22(4):729–742. http://dx.doi.org/10.1111/j.1467-8659.2003.00720.x
Schjøth, L., 2009. Anisotropic Density Estimation in Global Illumination. PhD Thesis, University of Copenhagen, Denmark.
Schjøth, L., Frisvad, J.R., Erleben, K., 2007. Photon differentials. Proc. 5th Int. Conf. on Computer Graphics and Interactive Techniques, p.179–186. http://dx.doi.org/10.1145/1321261.1321293
Schjøth, L., Sporring, J., Olsen, O.F., 2008. Diffusion based photon mapping. Comput. Graph. Forum, 27(8):2114–2127. http://dx.doi.org/10.1111/j.1467-8659.2008.01196.x
Singh, S., Faloutsos, P., 2007. SIMD packet techniques for photon mapping. Proc. IEEE Symp. on Interactive Ray Tracing, p.87–94. http://dx.doi.org/10.1109/RT.2007.4342595
Spencer, B., Jones, M.W., 2009. Into the blue: better caustics through photon relaxation. Comput. Graph. Forum, 28(2):319–328. http://dx.doi.org/10.1111/j.1467-8659.2009.01371.x
Spencer, B., Jones, M.W., 2013a. Photon parameterisation for robust relaxation constraints. Comput. Graph. Forum, 32(2pt1):83–92. http://dx.doi.org/10.1111/cgf.12028
Spencer, B., Jones, M.W., 2013b. Progressive photon relaxation. ACM Trans. Graph., 32(1):7.1–7.11. http://dx.doi.org/10.1145/2421636.2421643
Spencer, B., Jones, M.W., Lim, I.S., 2015. A visualization tool used to develop new photon mapping techniques. Comput. Graph. Forum, 34(1):127–140. http://dx.doi.org/10.1111/cgf.12464
Stürzlinger, W., Bastos, R., 1997. Interactive rendering of globally illuminated glossy scenes. Proc. Eurographics Workshop on Rendering Techniques, p.93–102. http://dx.doi.org/10.1007/978-3-7091-6858-5_9
Suykens, F., Willems, Y.D., 2000. Density control for photon maps. Proc. 11th Eurographics Workshop on Rendering Techniques, p.23–34. http://dx.doi.org/10.1007/978-3-7091-6303-0_3
Tamura, M., Takizawa, H., Kobayashi, H., 2008. A parallel image generation algorithm based on photon map partitioning. Proc. Conf. on Computer Graphics and Imaging, p.145–151.
Ulichney, R.A., 1988. Dithering with blue noise. Proc. IEEE, 76(1):56–79. http://dx.doi.org/10.1109/5.3288
Wang, R., Zhou, K., Pan, M., et al., 2009. An efficient GPU-based approach for interactive global illumination. ACM Trans. Graph., 28(3):91.1–91.8. http://dx.doi.org/10.1145/1531326.1531397
Yao, C.H., Wang, B., Chan, B., et al., 2010. Multi-image based photon tracing for interactive global illumination of dynamic scenes. Comput. Graph. Forum, 29(4):1315–1324. http://dx.doi.org/10.1111/j.1467-8659.2010.01727.x
Zhou, K., Hou, Q., Wang, R., et al., 2008. Real-time KDtree construction on graphics hardware. ACM Trans. Graph., 27(5):126.1–126.12. http://dx.doi.org/10.1145/1409060.1409079
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 61472224 and 61472225), the Young Scholars Program of Shandong University, China (No. 2015WLJH41), the Shandong Key Research and Development Program, China (No. 2015GGX106006), the Special Funding of Independent Innovation and Transformation of Achievements in Shandong Province of China (No. 2014ZZCX08201), and the Special Funds of Taishan Scholar Construction Project, China
ORCID: Chun-meng KANG, http://orcid.org/0000-0003-0156-058X
Rights and permissions
About this article
Cite this article
Kang, Cm., Wang, L., Xu, Yn. et al. A survey of photon mapping state-of-the-art research and future challenges. Frontiers Inf Technol Electronic Eng 17, 185–199 (2016). https://doi.org/10.1631/FITEE.1500251
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500251