A survey of photon mapping state-of-the-art research and future challenges | Frontiers of Information Technology & Electronic Engineering Skip to main content
Log in

A survey of photon mapping state-of-the-art research and future challenges

  • Review
  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding rendering. It is an active research field that has been developed over the past two decades. The deficiency of precise details and efficient rendering are still the main challenges of photon mapping. This report reviews recent work and classifies it into a set of categories including radiance estimation, photon relaxation, photon tracing, progressive photon mapping, and parallel methods. The goals of our report are giving readers an overall introduction to photon mapping and motivating further research to address the limitations of existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belcour, L., Soler, C., 2011. Frequency based kernel estimation for progressive photon mapping. Proc. SIGGRAPH Asia, p.47:1. http://dx.doi.org/10.1145/2073304.2073357

    Google Scholar 

  • Benthin, C., Wald, I., Woop, S., et al., 2012. Combining single and packet-ray tracing for arbitrary ray distributions on the Intel MIC architecture. IEEE Trans. Visual. Comput. Graph., 18(9):1438–1448. http://dx.doi.org/10.1109/TVCG.2011.277

    Article  Google Scholar 

  • Chen, J.T., Ge, X.Y., Wei, L.Y., et al., 2013. Bilateral blue noise sampling. ACM Trans. Graph., 32(6):216.1–216.11. http://dx.doi.org/10.1145/2508363.2508375

    Google Scholar 

  • Davidovic, T., Křivánek, J., Hašan, M., et al., 2014. Progressive light transport simulation on the GPU: survey and improvements. ACM Trans. Graph., 33(3):29.1–29.19. http://dx.doi.org/10.1145/2602144

    Article  Google Scholar 

  • Dmitriev, K., Brabec, S., Myszkowski, K., et al., 2002. Interactive global illumination using selective photon tracing. Proc. 13th Eurographics Workshop on Rendering, 2002:100–113.

    Google Scholar 

  • Fabianowski, B., Dingliana, J., 2009. Interactive global photon mapping. Comput. Graph. Forum, 28(4):1151–1159. http://dx.doi.org/10.1111/j.1467-8659.2009.01492.x

    Article  Google Scholar 

  • Fallahpour, M., Lin, M.B., Lin, C.H., 2014. Parallel photonmapping rendering on a mesh-noc-based mpsoc platform. J. Parall. Distrib. Comput., 74(7):2626–2638. http://dx.doi.org/10.1016/j.jpdc.2014.03.005

    Article  Google Scholar 

  • Fan, S., Chenney, S., Lai, Y., 2005. Metropolis photon sampling with optional user guidance. Proc. Eurographics Symp. on Rendering, p.127–138.

    Google Scholar 

  • Fradin, D., Meneveaux, D., Horna, S., 2005. Out-of-core photon-mapping for large buildings. Proc. Eurographics Symp. on Rendering, p.65–72.

    Google Scholar 

  • Frisvad, J.R., Schjøth, L., Erleben, K., et al., 2014. Photon differential splatting for rendering caustics. Comput. Graph. Forum, 33(6):252–263. http://dx.doi.org/10.1111/cgf.12347

    Article  Google Scholar 

  • Frolov, A.A., Kharlamov, V.A., Galaktionov, K.A., et al., 2014. Multiple reference octrees for a GPU photon mapping and irradiance caching. Program. Comput. Softw., 40(4):208–214. http://dx.doi.org/10.1134/S0361768814040033

    Article  MathSciNet  Google Scholar 

  • García, R., Ureña, C., Sbert, M., 2012. Description and solution of an unreported intrinsic bias in photon mapping density estimation with constant kernel. Comput. Graph. Forum, 31(1):33–41. http://dx.doi.org/10.1111/j.1467-8659.2011.02081.x

    Article  Google Scholar 

  • García, R., Ureña, C., Poch, J., et al., 2014. Overestimation and underestimation biases in photon mapping with non-constant kernels. IEEE Trans. Visual. Comput. Graph., 20(10):1441–1450. http://dx.doi.org/10.1109/TVCG.2014.2314665

    Article  Google Scholar 

  • Georgiev, I., Křivánek, J., DavidoviČ, T., et al., 2013. Light transport simulation with vertex connection and merging. Proc. 23rd Int. Conf. on Transport Theory, p.1–2.

    Google Scholar 

  • Günther, J., Grosch, T., 2014. Distributed out-of-core stochastic progressive photon mapping. Comput. Graph. Forum, 33(6):154–166. http://dx.doi.org/10.1111/cgf.12340

    Article  Google Scholar 

  • Günther, J., Wald, I., Slusallek, P., 2004. Realtime caustics using distributed photon mapping. Proc. Eurographics Symp. on Rendering Techniques, p.111–121.

    Google Scholar 

  • Hachisuka, T., Jensen, H.W., 2009. Stochastic progressive photon mapping. ACM Trans. Graph., 28(5):141.1–141.8. http://dx.doi.org/10.1145/1618452.1618487

    Article  Google Scholar 

  • Hachisuka, T., Jensen, H.W., 2010. Parallel progressive photon mapping on GPUs. Proc. ACM SIGGRAPH Asia, p.54.1. http://dx.doi.org/10.1145/1899950.1900004

    Google Scholar 

  • Hachisuka, T., Jensen, H.W., 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph., 30(5):114.1–114.11. http://dx.doi.org/10.1145/2019627.2019633

    Article  Google Scholar 

  • Hachisuka, T., Ogaki, S., Jensen, H.W., 2008. Progressive photon mapping. ACM Trans. Graph., 27(5):130.1–130.8. http://dx.doi.org/10.1145/1409060.1409083

    Article  Google Scholar 

  • Hachisuka, T., Jarosz, W., Jensen, H.W., 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph., 29(6):144.1–144.12. http://dx.doi.org/10.1145/1882261.1866170

    Article  Google Scholar 

  • Hachisuka, T., Pantaleoni, J., Jensen, W.R., 2012. A path space extension for robust light transport simulation. ACM Trans. Graph., 31(6):191.1-191.10. http://dx.doi.org/10.1145/2366145.2366210

    Google Scholar 

  • Havran, V., Bittner, J., Herzog, R., et al., 2005. Ray maps for global illumination. Proc. 16th Eurographics Conf. on Rendering Techniques, p.43–54. http://dx.doi.org/10.2312/EGWR/EGSR05/043-054

    Google Scholar 

  • Herzog, R., Havran, V., Kinuwaki, S., et al., 2007. Global illumination using photon ray splatting. Comput. Graph. Forum, 26(3):503–513. http://dx.doi.org/10.1111/j.1467-8659.2007.01073.x

    Article  Google Scholar 

  • Igehy, H., 1999. Tracing ray differentials. Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques, p.179–186. http://dx.doi.org/10.1145/311535.311555

    Google Scholar 

  • Jensen, H.W., 1995. Importance driven path tracing using the photon map. Proc. Eurographics Workshop on Rendering Techniques, p.326–335. http://dx.doi.org/10.1007/978-3-7091-9430-0_31

    Google Scholar 

  • Jensen, H.W., 1996. Global illumination using photon maps. Proc. Eurographics Workshop on Rendering Techniques, p.21–30. http://dx.doi.org/10.1007/978-3-7091-7484-5_3

    Google Scholar 

  • Jensen, H.W., 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, USA.

    Book  Google Scholar 

  • Jensen, H.W., Christensen, N.J., 1995. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph., 19(2):215–224. http://dx.doi.org/10.1016/0097-8493(94)00145-O

    Article  Google Scholar 

  • Kajiya, J.T., 1986. The rendering equation. Comput. Graph., 20(4):143–150. http://dx.doi.org/10.1145/15886.15902

    Article  Google Scholar 

  • Kang, C.M., Wang, L., Wang, P., et al., 2015. Coherent photon mapping on the Intel MIC architecture. J. Comput. Sci. Technol., 30(3):519–527. http://dx.doi.org/10.1007/s11390-015-1542-1

    Article  Google Scholar 

  • Kaplanyan, A.S., Dachsbacher, C., 2013. Adaptive progressive photon mapping. ACM Trans. Graph., 32(2):16.1–16.13. http://dx.doi.org/10.1145/2451236.2451242

    Article  Google Scholar 

  • Keller, A., Wald, I., 2000. Efficient importance sampling techniques for the photon map. Proc. Conf. on Vision, Modeling, and Visualization, p.271–278.

    Google Scholar 

  • Keller, A., Fascione, L., Fajardo, M., et al., 2015. The path tracing revolution in the movie industry. Proc. ACM SIGGRAPH Courses, p.24.1–24.7. http://dx.doi.org/10.1145/2776880.2792699

    Google Scholar 

  • Knaus, C., Zwicker, M., 2011. Progressive photon mapping: a probabilistic approach. ACM Trans. Graph., 30(3):25.1–25.13. http://dx.doi.org/10.1145/1966394.1966404

    Article  Google Scholar 

  • Křivánek, J., Georgiev, I., Hachisuka, T., et al., 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph., 33(4):70–79.

    Article  Google Scholar 

  • Lafortune, E.P., Willems, Y.D., 1993. Bi-directional path tracing. Proc. Computer Graphics, p.145–153.

    Google Scholar 

  • Larsen, B.D., Christensen, N.J., 2004. Simulating photon mapping for real-time applications. Proc. 15th Eurographics Conf. on Rendering Techniques, p.123–131.

    Google Scholar 

  • Lavignotte, F., Paulin, M., 2003. Scalable photon splatting for global illumination. Proc. 1st Int. Conf. on Computer Graphics and Interactive Techniques, p.203–210. http://dx.doi.org/10.1145/604471.604511

    Google Scholar 

  • Liu, X.D., Zheng, C.W., 2014a. Adaptive importance photon shooting technique. Comput. Graph., 38:158–166. http://dx.doi.org/10.1016/j.cag.2013.10.027

    Article  Google Scholar 

  • Liu, X.D., Zheng, C.W., 2014b. Anisotropic progressive photon mapping. Proc. 5th Int. Conf. on Graphic and Image Processing, Article No. 90690C. http://dx.doi.org/10.1117/12.2050058

    Google Scholar 

  • Ma, V.C.H., McCool, M.D., 2002. Low latency photon mapping using block hashing. Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, p.89–99.

    Google Scholar 

  • Mara, M., Luebke, D., McGuire, M., 2013. Toward practical real-time photon mapping: efficient GPU density estimation. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.71–78. http://dx.doi.org/10.1145/2448196.2448207

    Google Scholar 

  • McGuire, M., Luebke, D., 2009. Hardware-accelerated global illumination by image space photon mapping. Proc. Conf. on High Performance Graphics, p.77–89. http://dx.doi.org/10.1145/1572769.1572783

    Google Scholar 

  • Myszkowski, K., 1997. Lighting reconstruction using fast and adaptive density estimation techniques. Proc. Eurographics Workshop on Rendering Techniques, p.251–262. http://dx.doi.org/10.1007/978-3-7091-6858-5_23

    Google Scholar 

  • Parker, S.G., Bigler, J., Dietrich, A., et al., 2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph., 29(4):66.1–66.13. http://dx.doi.org/10.1145/1778765.1778803

    Article  Google Scholar 

  • Purcell, T.J., Donner, C., Cammarano, M., et al., 2003. Photon mapping on programmable graphics hardware. Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, p.41–50.

    Google Scholar 

  • Roland, S., 2003. Bias compensation for photon maps. Comput. Graph. Forum, 22(4):729–742. http://dx.doi.org/10.1111/j.1467-8659.2003.00720.x

    Article  Google Scholar 

  • Schjøth, L., 2009. Anisotropic Density Estimation in Global Illumination. PhD Thesis, University of Copenhagen, Denmark.

    Google Scholar 

  • Schjøth, L., Frisvad, J.R., Erleben, K., 2007. Photon differentials. Proc. 5th Int. Conf. on Computer Graphics and Interactive Techniques, p.179–186. http://dx.doi.org/10.1145/1321261.1321293

    Google Scholar 

  • Schjøth, L., Sporring, J., Olsen, O.F., 2008. Diffusion based photon mapping. Comput. Graph. Forum, 27(8):2114–2127. http://dx.doi.org/10.1111/j.1467-8659.2008.01196.x

    Article  Google Scholar 

  • Singh, S., Faloutsos, P., 2007. SIMD packet techniques for photon mapping. Proc. IEEE Symp. on Interactive Ray Tracing, p.87–94. http://dx.doi.org/10.1109/RT.2007.4342595

    Google Scholar 

  • Spencer, B., Jones, M.W., 2009. Into the blue: better caustics through photon relaxation. Comput. Graph. Forum, 28(2):319–328. http://dx.doi.org/10.1111/j.1467-8659.2009.01371.x

    Article  Google Scholar 

  • Spencer, B., Jones, M.W., 2013a. Photon parameterisation for robust relaxation constraints. Comput. Graph. Forum, 32(2pt1):83–92. http://dx.doi.org/10.1111/cgf.12028

    Article  Google Scholar 

  • Spencer, B., Jones, M.W., 2013b. Progressive photon relaxation. ACM Trans. Graph., 32(1):7.1–7.11. http://dx.doi.org/10.1145/2421636.2421643

    Article  Google Scholar 

  • Spencer, B., Jones, M.W., Lim, I.S., 2015. A visualization tool used to develop new photon mapping techniques. Comput. Graph. Forum, 34(1):127–140. http://dx.doi.org/10.1111/cgf.12464

    Article  Google Scholar 

  • Stürzlinger, W., Bastos, R., 1997. Interactive rendering of globally illuminated glossy scenes. Proc. Eurographics Workshop on Rendering Techniques, p.93–102. http://dx.doi.org/10.1007/978-3-7091-6858-5_9

    Google Scholar 

  • Suykens, F., Willems, Y.D., 2000. Density control for photon maps. Proc. 11th Eurographics Workshop on Rendering Techniques, p.23–34. http://dx.doi.org/10.1007/978-3-7091-6303-0_3

    Google Scholar 

  • Tamura, M., Takizawa, H., Kobayashi, H., 2008. A parallel image generation algorithm based on photon map partitioning. Proc. Conf. on Computer Graphics and Imaging, p.145–151.

    Google Scholar 

  • Ulichney, R.A., 1988. Dithering with blue noise. Proc. IEEE, 76(1):56–79. http://dx.doi.org/10.1109/5.3288

    Article  Google Scholar 

  • Wang, R., Zhou, K., Pan, M., et al., 2009. An efficient GPU-based approach for interactive global illumination. ACM Trans. Graph., 28(3):91.1–91.8. http://dx.doi.org/10.1145/1531326.1531397

    Google Scholar 

  • Yao, C.H., Wang, B., Chan, B., et al., 2010. Multi-image based photon tracing for interactive global illumination of dynamic scenes. Comput. Graph. Forum, 29(4):1315–1324. http://dx.doi.org/10.1111/j.1467-8659.2010.01727.x

    Article  Google Scholar 

  • Zhou, K., Hou, Q., Wang, R., et al., 2008. Real-time KDtree construction on graphics hardware. ACM Trans. Graph., 27(5):126.1–126.12. http://dx.doi.org/10.1145/1409060.1409079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61472224 and 61472225), the Young Scholars Program of Shandong University, China (No. 2015WLJH41), the Shandong Key Research and Development Program, China (No. 2015GGX106006), the Special Funding of Independent Innovation and Transformation of Achievements in Shandong Province of China (No. 2014ZZCX08201), and the Special Funds of Taishan Scholar Construction Project, China

ORCID: Chun-meng KANG, http://orcid.org/0000-0003-0156-058X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Cm., Wang, L., Xu, Yn. et al. A survey of photon mapping state-of-the-art research and future challenges. Frontiers Inf Technol Electronic Eng 17, 185–199 (2016). https://doi.org/10.1631/FITEE.1500251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500251

Key words

CLC number

Navigation