Computer Science > Data Structures and Algorithms
[Submitted on 7 Nov 2011]
Title:Near Linear-Work Parallel SDD Solvers, Low-Diameter Decomposition, and Low-Stretch Subgraphs
View PDFAbstract:We present the design and analysis of a near linear-work parallel algorithm for solving symmetric diagonally dominant (SDD) linear systems. On input of a SDD $n$-by-$n$ matrix $A$ with $m$ non-zero entries and a vector $b$, our algorithm computes a vector $\tilde{x}$ such that $\norm[A]{\tilde{x} - A^+b} \leq \vareps \cdot \norm[A]{A^+b}$ in $O(m\log^{O(1)}{n}\log{\frac1\epsilon})$ work and $O(m^{1/3+\theta}\log \frac1\epsilon)$ depth for any fixed $\theta > 0$.
The algorithm relies on a parallel algorithm for generating low-stretch spanning trees or spanning subgraphs. To this end, we first develop a parallel decomposition algorithm that in polylogarithmic depth and $\otilde(|E|)$ work, partitions a graph into components with polylogarithmic diameter such that only a small fraction of the original edges are between the components. This can be used to generate low-stretch spanning trees with average stretch $O(n^{\alpha})$ in $O(n^{1+\alpha})$ work and $O(n^{\alpha})$ depth. Alternatively, it can be used to generate spanning subgraphs with polylogarithmic average stretch in $\otilde(|E|)$ work and polylogarithmic depth. We apply this subgraph construction to derive a parallel linear system solver. By using this solver in known applications, our results imply improved parallel randomized algorithms for several problems, including single-source shortest paths, maximum flow, minimum-cost flow, and approximate maximum flow.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.