The Role of Personality in Motivation to use an Affective Feedback System | Programming and Computer Software Skip to main content
Log in

The Role of Personality in Motivation to use an Affective Feedback System

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Motivation is an essential element in the learning process. In computer-based tutoring environments, motivational components are as significant as cognitive ones. Previous work established that automatic affective feedback improves student motivation when he/she uses Tutoring Systems. Also, prior work examines the relationship between student’s motivation to learn and personality traits, but only from a partial point of view. The present study analyzes whole personality traits on motivation to learn by students using a Tutoring System. The work involved 30 undergraduate students in a qualitative experiment. The authors examined the results using Chi2 to determine the relationship between motivation to use the system and personality; a Naïve Bayes classifier was applied. The findings suggested that Neuroticism is a factor that influences student’s motivation to use the tutoring system. Also, the Naïve Bayes algorithm reaches an accuracy of 90% for the classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Dāboliņš, J. and Grundspeņķis, J., The role of feedback in intelligent tutoring system, Appl. Comput. Syst., 2013, vol. 14, no. 1, pp. 88–93. https://doi.org/10.2478/acss-2013-0011

    Article  Google Scholar 

  2. Gavrilova, E.A., Implementation features a university data portal using the semantic web technology, Program. Comput. Software, 2011, vol. 37, no. 1, pp. 48–55. https://doi.org/10.1134/S0361768811010026

    Article  Google Scholar 

  3. Daineko, Y.A., Ipalakova, M.T., and Bolatov, Z.Z., Employing information technologies based on. NET XNA framework for developing a virtual physical laboratory with elements of 3D computer modeling, Program. Comput. Software, 2017, vol. 43, no. 3, pp. 161–171. https://doi.org/10.1134/S0361768817030045

    Article  Google Scholar 

  4. Gross, S., Mokbel, B., Hammer, B., and Pinkwart, N., Learning feedback in intelligent tutoring systems, Künstliche Intelligenz, 2015, vol. 29, no. 4, pp. 413–418. https://doi.org/10.1007/s13218-015-0367-y

    Article  Google Scholar 

  5. Hasan, M.A., Noor, N.F.M., Rahman, S.S.B.A., and Rahman, M.M., The transition from intelligent to affective tutoring system: a review and open issues, IEEE Access, 2020, vol. 8, pp. 204612–204638. https://doi.org/10.1109/access.2020.3036990

    Article  Google Scholar 

  6. Robison, J., McQuiggan, S., Lester, J., and Carolina, N., Profiles for Affective Feedback Models,” pp. 285–295, 2010.

    Google Scholar 

  7. Hassan, L., Dias, A., and Hamari, J., How motivational feedback increases user’s benefits and continued use: a study on gamification, quantified-self and social networking, Int. J. Inf. Manag., 2019, vol. 46, pp. 151–162. https://doi.org/10.1016/j.ijinfomgt.2018.12.004

    Article  Google Scholar 

  8. Theng, Y.L. and Aung, P., Investigating effects of avatars on primary school children’s affective responses to learning, J. Multimodal User Interfaces, 2012, vol. 5, no. 1–2, pp. 45–52. https://doi.org/10.1007/s12193-011-0078-0

    Article  Google Scholar 

  9. Van der Meij, H., Van der Meij, J., and Harmsen, R., Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment, Educ. Technol. Res. Dev., 2015, vol. 63, no. 3, pp. 381–403. https://doi.org/10.1007/s11423-015-9378-5

    Article  Google Scholar 

  10. Kim, C., The role of affective and motivational factors in designing personalized learning environments, Educ. Technol. Res. Dev., 2012, vol. 60, no. 4, pp. 563–584. https://doi.org/10.1007/s11423-012-9253-6

    Article  Google Scholar 

  11. Malekzadeh, M., Mustafa, M.B., and Lahsasna, A., A review of emotion regulation in intelligent tutoring systems, Educ. Technol. Soc., 2015, vol. 18, pp. 435–445.

    Google Scholar 

  12. De Vicente, A. and Pain, H., Motivation diagnosis in intelligent tutoring systems, Proc. 4th Int. Conf. Intelligent Tutoring Systems, San Antonio, 1998, vol. 83, pp. 86–95. https://doi.org/10.1103/PhysRevB.83.121309

  13. Jiménez, S., Juárez-Ramírez, R., Castillo, V.H., Licea, G., Ramírez-Noriega, A., and Inzunza, S., A feedback system to provide affective support to students, Comput. Appl. Eng. Educ., 2018, vol. 1, p. 1. https://doi.org/10.1002/cae.21900

    Google Scholar 

  14. Dennis, M., Masthoff, J., and Mellish, C., Adapting progress feedback and emotional support to learner personality, Int. J. Artif. Intell. Educ., 2016, vol. 26, no. 3, pp. 877–931. https://doi.org/10.1007/s40593-015-0059-7

    Article  Google Scholar 

  15. Jiménez, S., Juárez-Ramírez, R., Castillo, V.H., and Ramírez-Noriega, A., Integrating affective learning into intelligent tutoring systems, Univers. Access Inf. Soc., 2017, vol. 1, no. 1, pp. 1–14. https://doi.org/10.1007/s10209-017-0524-1

    Google Scholar 

  16. Busato, V.V., Prins, F.J., Elshout, J.J., and Hamaker, C., Intellectual ability, learning style, personality, achievement motivation and academic success of psychology students in higher education, Pers. Individ. Differ., 2000, vol. 29, no. 6, pp. 1057–1068. https://doi.org/10.1016/S0191-8869(99)00253-6

    Article  Google Scholar 

  17. Clark, M.H. and Schroth, C.A., Examining relationships between academic motivation and personality among college students, Learn. Individ. Differ., 2010, vol. 20, no. 1, pp. 19–24. https://doi.org/10.1016/j.lindif.2009.10.002

    Article  Google Scholar 

  18. De Feyter, T., Caers, R., Vigna, C., and Berings, D., Unraveling the impact of the Big Five personality traits on academic performance: the moderating and mediating effects of self-efficacy and academic motivation, Learn. Individ. Differ., 2012, vol. 22, no. 4, pp. 439–448. https://doi.org/10.1016/j.lindif.2012.03.013

    Article  Google Scholar 

  19. Goldberg, L.R., A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models, in Personality Psychology in Europe, Mervielde, I., Deary, I., De Fruyt, F., and Ostendorf, F., Eds., Tilburg: Tilburg Univ. Press, 1999, pp. 7–28.

    Google Scholar 

  20. Dennis, M., Masthoff, J., and Mellish, C., Towards a model of personality, affective state, feedback and learner motivation, Proc. CEUR Workshop, 2012, vol. 872, pp. 17–22.

  21. Mubeen, S. and Reid, N., The measurement of motivation with science students, Eur. J. Educ. Res., 2014, vol. 3, no. 3, pp. 129–144. https://doi.org/10.12973/eu-jer.3.3.129

    Article  Google Scholar 

  22. Keller, J.M., Using the ARCS motivational process in computer-based instruction and distance education, New Dir. Teach. Learn., 1999, no. 78, pp. 39–47. https://doi.org/10.1002/tl.7804

  23. Dāboliņš, J. and Grundspeņķis, J., The role of feedback in intelligent tutoring system, Appl. Comput. Syst., 2013, vol. 14, no. 1, pp. 88–93. https://doi.org/10.2478/acss-2013-0011

    Article  Google Scholar 

  24. Naghizadeh, M. and Moradi, H., A model for motivation assessment in intelligent tutoring systems, Proc. 7th Conf. on Information Knowledge Technologies (IKT), Urmia, 2015, pp. 1–6. https://doi.org/10.1109/IKT.2015.7288774

  25. Song, D., Bonk, C.J., and English, R.M., Motivational factors in self-directed informal learning from online learning resources, Cogent Educ., 2016, vol. 3, p. 1205838. https://doi.org/10.1080/2331186X.2016.1205838

    Article  Google Scholar 

  26. Chang, N.-C. and Chen, H.-H., A motivational analysis of the ARCS model for information literacy courses in a blended learning environment, Libri, 2015, vol. 65, no. 2, pp. 129–142. https://doi.org/10.1515/libri-2015-0010

    Article  Google Scholar 

  27. D’Mello, S. and Graesser, A., Autotutor and affective autotutor: learning by talking with cognitively and emotionally intelligent computers that talk vack, ACM Trans. Interact. Intell. Syst., 2012, vol. 2, no. 4, pp. 1–39. https://doi.org/10.1145/2395123.2395128

    Article  Google Scholar 

  28. Woolf, B.P., Arroyo, I., Cooper, D., Burleson, W., and Muldner, K., Affective tutors: automatic detection of and response to student emotion, in Advances in Intelligent Tutoring Systems, 2010, pp. 207–227. https://doi.org/10.1007/978-3-642-14363-2

  29. Letzring, T.D. and Adamcik, L.A., Personality traits and affective states: relationships with and without affect induction, Pers. Individ. Differ., 2015, vol. 75, pp. 114–120. https://doi.org/10.1016/j.paid.2014.11.011

    Article  Google Scholar 

  30. Jiménez, S., Juárez-Ramírez, R., Navarro, R., Coronel, A., and Castillo, V.H., Architecting an intelligent tutoring system with an affective dialogue module, Proc. 4th Int. Conf. in Software Engineering Research and Innovation, Puebla, 2016, pp. 122–129.

  31. Mills, A., Durepos, G., and Wiebe, E., Encyclopedia of Case Study Research, Thousand Oaks, CA: Sage Publ., 2010.

    Book  Google Scholar 

  32. Sampieri, R.H., Collado, C.F., and Lucio, P.B., Metodologia de la Investigación, 4th ed., McGraw-Hill, 2006.

  33. Cohen, L., Manion, L., and Morrison, K., Research Methods in Education, 7th ed., Routledge, 2011.

    Google Scholar 

  34. Nunnally, J.C. and Bernstein, I.H., Psychometric Theory, New York: McGraw-Hill, 1994.

    Google Scholar 

  35. Neill, J., Writing up a factor analysis, Retrieved Sept., 2008, vol. 7, pp. 1–15. http://www.bwgriffin.com/gsu/courses/edur9131/content/Neill2008_WritingUpAFactorAnalysis.pdf.

  36. Ung, P., Ngowtrakul, B., Chotpradit, R., and Thavornwong, N., Spatial ability test for upperelementary school student: confirmatory factor and normative data analysis, J. Assoc. Res., 2016, vol. 21, no. 2.

  37. OECD, Enrolment rate (indicator), 2017.

  38. Crouch, M. and MacKenzie, H., The logic of small samples in interview-based qualitative research, Soc. Sci. Inf., 2006, vol. 45, no. 4, p. 24.

    Article  Google Scholar 

  39. Latham, J.R., A framework for leading the transformation to performance excellence part I: CEO perspectives on forces, facilitators, and strategic leadership systems, Qual. Manag. J., 2006, vol. 2, no. 20, p. 22.

    Google Scholar 

  40. Caine, K., Local standards for sample size at CHI, Proc. 2016 CHI Conf. Human Factors in Computing Systems, San Jose, CA, 2016, pp. 981–992. https://doi.org/10.1145/2858036.2858498

  41. Gelbukh, A. and Sidorov, G., Comparación de los coeficientes de las leyes de Zipf y Heaps en diferentes idiomas, in Procesamiento automático del español conenfoque en recursos léxicos grandes, México: Instituto Politécnico Nacional, 2006, pp. 1–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Jiménez, R. Juárez-Ramírez, V. H. Castillo, A. Ramírez-Noriega, Bogart Yail Márquez or A. Alanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, S., Juárez-Ramírez, R., Castillo, V.H. et al. The Role of Personality in Motivation to use an Affective Feedback System. Program Comput Soft 47, 793–802 (2021). https://doi.org/10.1134/S0361768821080156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821080156

Navigation