Abstract
We present an asymptotically efficient coding strategy for a stationary countably infinite source determined over a set of nonnegative integers. If the kth moment µ k of the source data is finite, then asymptotic average coding redundancy for length-n blocks, n → ∞, is upper bounded by C (log n/n)k/(k+1), where C is a nonnegative constant. The coding efficiency is demonstrated via an example of scalar quantization of random variables with generalized Gaussian distribution.
Similar content being viewed by others
References
Bocharova, I., Compression for Multimedia, Cambridge: Cambridge Univ. Press, 2010.
Ziv, J. and Lempel, A., Compression of Individual Sequences via Variable-Rate Coding, IEEE Trans. Inform. Theory, 1978, vol. 24, no. 5, pp. 530–536.
Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 1991.
Golomb, S.W., Run-Length Encodings, IEEE Trans. Inform. Theory, 1966, vol. 12, no. 3, pp. 399–401.
Rice, R.F., Some Practical Universal Noiseless Coding Techniques, Tech. Rep. of Jet Propulsion Lab., California Inst. of Technology, Pasadena, CA, Mar. 15, 1979, no. JPL-79-22.
Gallager, R.G. and Van Voorhis, D.C., Optimal Source Codes for Geometrically Distributed Integer Alphabets, IEEE Trans. Inform. Theory, 1975, vol. 21, no. 2, pp. 228–230.
Levenshtein, V.I., On the Redundancy and Delay of Uniquely Decodable Codes for Natural Numbers, Probl. Kibern., 1968, vol. 20, pp. 173–179.
Elias, P., Universal Codeword Sets and Representations of the Integers, IEEE Trans. Inform. Theory, 1975, vol. 21, no. 2, pp. 194–203.
Elias, P., Interval and Recency Rank Source Coding: Two On-line Adaptive Variable-Length Schemes, IEEE Trans. Inform. Theory, 1987, vol. 33, no. 1, pp. 3–10.
Shtarkov, Yu.M., Universal’noe kodirovanie. Teoriya i algoritmy (Universal Coding: Theory and Algorithms), Moscow: Fizmatlit, 2013.
Boucheron, S., Garivier, A., and Gassiat, E., Coding on Countably Infinite Alphabets, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 1, pp. 358–373.
Fitingof, B.M., Optimal Coding in the Case of Unknown and Changing Message Statistics, Probl. Peredachi Inf., 1966, vol. 2, no. 2, pp. 3–11 [Probl. Inf. Trans. (Engl. Transl.), 1966, vol. 2, no. 2, pp. 1–7].
Babkin, V.F., A Universal Encoding Method with Nonexponential Work Expenditure for a Source of Independent Messages, Probl. Peredachi Inf., 1971, vol. 7, no. 4, pp. 13–21 [Probl. Inf. Trans. (Engl. Transl.), 1971, vol. 7, no. 4, pp. 288–294].
Krichevsky, R.E. and Trofimov, V.K., The Performance of Universal Coding, IEEE Trans. Inform. Theory, 1981, vol. 27, no. 2, pp. 199–207.
Gyorfi, L., Pali, I., and van der Meulen, E.C., There Is No Universal Source Code for an Infinite Source Alphabet, IEEE Trans. Inform. Theory, 1994, vol. 40, no. 1, pp. 267–271.
Acharya, J., Das, H., Jafarpour, A., Orlitsky, A., and Suresh, A.T., Tight Bounds for Universal Compression of Large Alphabets, in Proc. 2013 IEEE Int. Sympos. on Information Theory (ISIT’2013), Istanbul, Turkey, July 7–12, 2013, pp. 2875–2879.
Shtarkov, Yu.M., Universal Sequential Coding of Single Messages, Probl. Peredachi Inf., 1987, vol. 23, no. 3, pp. 3–17 [Probl. Inf. Trans. (Engl. Transl.), 1987, vol. 23, no. 3, pp. 175–186].
Gallager, R.G., Information Theory and Reliable Communication, New York: Wiley, 1968. Translated under the title Teoriya informatsii i nadezhnaya svyaz’, Moscow: Sov. Radio, 1974.
Sharifi, K. and Leon-Garcia, A., Estimation of Shape Parameter for Generalized Gaussian Distributions in Subband Decompositions of Video, IEEE Trans. Circ. Syst. Video Techn., 1995, vol. 5, no. 1, pp. 52–56.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © B.D. Kudryashov, A.V. Porov, 2014, published in Problemy Peredachi Informatsii, 2014, Vol. 50, No. 4, pp. 100–109.
Rights and permissions
About this article
Cite this article
Kudryashov, B.D., Porov, A.V. Universal coding for memoryless sources with countably infinite alphabets. Probl Inf Transm 50, 390–399 (2014). https://doi.org/10.1134/S0032946014040085
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0032946014040085