Abstract
We study zero-one laws for random distance graph with vertices in {−1, 0, 1}n depending on a set of parameters. We give some conditions under which sequences of random distance graphs obey or do not obey the zero-one law.
Similar content being viewed by others
References
Glebskii, Yu.V., Kogan, D.I., Liogon’kii, M.I., and Talanov, V.A., Volume and Fraction of Satisfiability of Formulas of the Lower Predicate Calculus, Kibernetika (Kiev), 1969, no. 2, pp. 17–26.
Fagin, R., Probabilities on Finite Models, J. Symbolic Logic, 1976, vol. 41, no. 1, pp. 50–58.
Shelah, S. and Spencer, J.H., Zero-One Laws for Sparse Random Graphs, J. Amer. Math. Soc., 1988, vol. 1, no. 1, pp. 97–115.
Zhukovskii, M.E., Zero-One Laws for First-Order Formulas with a Bounded Quantifier Depth, Dokl. Ross. Akad. Nauk, 2011, vol. 436, no. 1, pp. 14–18 [Dokl. Math. (Engl. Transl.), 2011, vol. 83, no. 1, pp. 8–11].
Zhukovskii, M.E., Weak Zero-One Law for Random Distance Graphs, Vestn. Ross. Univ. Druzhby Narodov, Ser. Mat. Inform. Fiz., 2010, no. 2 (1), pp. 11–25.
Zhukovskii, M.E., Weak Zero-One Laws for Random Distance Graphs, Dokl. Ross. Akad. Nauk, 2010, vol. 430, no. 3, pp. 314–317 [Dokl. Math. (Engl. Transl.), 2010, vol. 81, no. 1, pp. 51–54].
Zhukovskii, M.E., The Weak Zero-One Law for Random Distance Graphs, Teor. Veroyatn. Primen., 2010, vol. 55, no. 2, pp. 344–349 [Theory Probab. Appl. (Engl. Transl.), 2010, vol. 55, no. 2, pp. 356–360].
Zhukovskii, M.E., On a Sequence of Random Distance Graphs Subject to the Zero-One Law, Probl. Peredachi Inf., 2011, vol. 47, no. 3, pp. 39–58 [Probl. Inf. Trans. (Engl. Transl.), 2011, vol. 47, no. 3, pp. 251–268].
Raigorodskii, A.M., The Borsuk Problem and the Chromatic Numbers of Some Metric Spaces, Uspekhi Mat. Nauk, 2001, vol. 56, no. 1, pp. 107–146 [Russian Math. Surveys (Engl. Transl.), 2001, vol. 56, no. 1, pp. 103–139].
Raigorodskii, A.M., Lineino-algebraicheskii metod v kombinatorike (Linear-Algebraic Method in Combinatorics), Moscow: MCCME, 2007.
MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.
Alon, N. and Spencer, J.H., The Probabilistic Method, New York: Wiley, 2000, 2nd ed. Translated under the title Veroyatnostnyi metod, Moscow: BINOM, 2007.
Kolchin, V.F., Random Graphs, Cambridge: Cambridge Univ. Press, 1999. Translated under the title Sluchainye grafy, Moscow: Fizmatlit, 2004, 2nd ed.
Raigorodskii, A.M., Modeli sluchainykh grafov (Models of Random Graphs), Moscow: MCCME, 2011.
Bollobás, B., Random Graphs, Cambridge: Cambridge Univ. Press, 2001, 2nd ed.
Janson, S., _Luczak, T., and Ruciński, A., Random Graphs, New York: Wiley, 2000.
Uspensky, V.A., Vereshchagin, N.K., and Plisko, V.E., Vvodnyi kurs matematicheskoi logiki (Introductory Course on Mathematical Logic), Moscow: Moscow State Univ., 1997.
Vereshchagin, N.K. and Shen, A., Yazyki i ischisleniya (Languages and Calculi), Moscow: MCCME, 2000.
Brass, P., Moser, W., and Pach, J., Research Problems in Discrete Geometry, Berlin: Springer, 2005.
Raigorodskii, A.M., On the Chromatic Numbers of Spheres in Euclidean Spaces, Dokl. Akad. Nauk, 2010, vol. 432, no. 2, pp. 174–177 [Dokl. Math. (Engl. Transl.), 2010, vol. 81, no. 3, pp. 379–382].
Raigorodskii, A.M., On the Chromatic Numbers of Spheres in ℝn, Combinbatorica, 2012, vol. 32, no. 1, pp. 111–123.
Raigorodskii, A.M., On the Chromatic Number of a Space with the Metric ℓ q, Uspekhi Mat. Nauk, 2004, vol. 59, no. 5 (359), pp. 161–162 [Russian Math. Surveys (Engl. Transl.), 2004, vol. 59, no. 5, pp. 973–975].
Gorskaya, E.S., Mitricheva, I.M., Protasov, V.Yu., and Raigorodskii, A.M., Estimation of the Chromatic Numbers of Euclidean Space by Convex Minimization Methods, Mat. Sb., 2009, vol. 200, no. 6, pp. 3–22 [Sb. Math. (Engl. Transl.), 2009, vol. 200, no. 5–6, pp. 783–801].
Raigorodskii, A.M. and Shitova, I.M., On the Chromatic Numbers of Real and Rational Spaces with Real or Rational Forbidden Distances, Mat. Sb., 2008, vol. 199, no. 4, pp. 107–142 [Sb. Math. (Engl. Transl.), 2008, vol. 199, no. 3–4, pp. 579–612].
Moshchevitin, N.G. and Raigorodskii, A.M., Colorings of the Space ℝn with Several Forbidden Distances, Mat. Zametki, 2007, vol. 81, no. 5, pp. 733–743 [Math. Notes (Engl. Transl.), 2007, vol. 81, no. 5–6, pp. 656–664].
Raigorodskii, A.M., On the Chromatic Number of a Space with Two Forbidden Distances, Dokl. Akad. Nauk, 2006, vol. 408, no. 5, pp. 601–604 [Dokl. Math. (Engl. Transl.), 2006, vol. 73, no. 3, pp. 417–420].
Raigorodskii, A.M., On Dimensionality in the Borsuk Problem, Uspekhi Mat. Nauk, 1997, vol. 52, no. 6, pp. 181–182 [Russian Math. Surveys (Engl. Transl.), 1997, vol. 52, no. 6, pp. 1324–1325].
Raigorodskii, A.M., On a Bound in the Borsuk Problem, Uspekhi Mat. Nauk, 1999, vol. 54, no. 2, pp. 185–186 [Russian Math. Surveys (Engl. Transl.), 1999, vol. 54, no. 2, pp. 453–454].
Raigorodskii, A.M., Three Lectures on the Borsuk Partition Problem, Surveys in Contemporary Mathematics, Young, N. and Choi, Y., Eds., London Math. Soc. Lect. Note Ser., vol. 347. Cambridge: Cambridge Univ. Press, 2007, pp. 202–248.
Raigorodskii, A.M., Around the Borsuk Conjecture, Sovrem. Mat. Fundam. Napravl., 2007, vol. 23, pp. 147–164 [J. Math. Sci. (N.Y.) (Engl. Transl.), 2007, vol. 154, no. 4, pp. 604–623].
Raigorodskii, A.M., Counterexamples to Borsuk’s Conjecture on Spheres of Small Radius, Dokl. Akad. Nauk, 2010, vol. 434, no. 2, pp. 161–163 [Dokl. Math. (Engl. Transl.), 2010, vol. 82, no. 2, pp. 719–721].
Raigorodskii, A.M., Coloring Distance Graphs and Graphs of Diameters, Thirty Essays on Geometric Graph Theory, Pach, J., Ed., Berlin: Springer, 2013, pp. 429–460.
Mikhailov, K.A. and Raigorodskii, A.M., On the Ramsey Numbers for Complete Distance Graphs with Vertices in {0, 1}n, Mat. Sb., 2009, vol. 200, no. 12, pp. 63–80 [Sb. Math. (Engl. Transl.), 2009, vol. 200, no. 11–12, pp. 1789–1806].
Yarmukhametov, A.R., Gigantic Component in Random Distance Graphs of Special Form, Mat. Zametki, 2012, vol. 92, no. 3, pp. 463–480 [Math. Notes (Engl. Transl.), 2012, vol. 92, no. 3–4, pp. 426–441].
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.N. Popova, 2014, published in Problemy Peredachi Informatsii, 2014, Vol. 50, No. 1, pp. 64–86.
Rights and permissions
About this article
Cite this article
Popova, S.N. Zero-one law for random distance graphs with vertices in {−1, 0, 1}n . Probl Inf Transm 50, 57–78 (2014). https://doi.org/10.1134/S0032946014010049
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0032946014010049