Abstract
The data envelopment analysis (DEA) approach has been actively developed in recent years and is used to analyze the activities of complex production units (regions, financial institutions, industrial enterprises, etc.). An important role in such an analysis is played by the calculation of various indicators of the activity of units: returns to scale, efficiency scores, marginal rates of substitution, transformations, etc. Dependences between variables in the DEA models are not explicitly specified; therefore, special optimization models are used to calculate these indicators. Much attention is given in the scientific literature to the estimation of returns to scale. This paper describes and compares some of the best known methods for calculating returns to scale. Computational experiments show that under certain conditions, the approach proposed by the authors has advantages over other methods.




Similar content being viewed by others
REFERENCES
Charnes, A., Cooper, W.W., and Rhodes, E., Measuring the efficiency of decision making units, Eur. J. Oper. Res., 1978, vol. 2, no. 6, pp. 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Banker, R.D., Charnes, A., and Cooper, W.W., Some models for estimating technical and scale efficiency in data envelopment analysis, Manage. Sci., 1984, vol. 30, no. 9, pp. 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
Hanoch, G., Homotheticity in joint production, J. Econ. Theor., 1970, vol. 2, no. 4, pp. 432–426. https://doi.org/10.1016/0022-0531(70)90024-4
Panzar, J.C. and Willig, R.D., Economies of scale in multi-output production, Q. J. Econ., 1977, vol. 91, no. 3, pp. 481–493. https://doi.org/10.2307/1885979
Starrett, D.A., Measuring returns to scale in the aggregate, and scale effect of public goods, Econometrica, 1977, vol. 45, no. 6, pp. 1439–1455. https://doi.org/10.2307/1912310
Shepard, R.W., Theory of Cost and Production Functions, New Jersey: Princeton Univ. Press, 1970.
Afanasiev, A.P., Krivonozhko, V.E., Lychev, A.V., and Sukhoroslov, O.V., Multidimensional frontier visualization based on optimization methods using parallel computations, J. Global. Optim., 2020, vol. 76, pp. 563–574. https://doi.org/10.1007/s10898-019-00812-y
Banker, R.D. and Thrall, R.M., Estimation of returns to scale using data envelopment analysis, Eur. J. Oper. Res., 1992, vol. 62, no. 1, pp. 74–84. https://doi.org/10.1016/0377-2217(92)90178-C
Førsund, F.R., On the calculation of the scale elasticity in DEA models, J. Prod. Anal., 1996, vol. 7, nos. 2–3, pp. 283–302. https://doi.org/10.1007/BF00157045
Cooper, W.W., Seiford, L.M., and Tone, K., Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software, New York: Springer Sci. Bus. Media, 2007, 2nd ed. https://doi.org/10.1007/978-0-387-45283-8
Tone, K., A simple characterization of returns to scale in DEA, J. Oper. Res. Soc. Jpn., 1996, vol. 39, no. 4, pp. 604–613.
Banker, R.D., Cooper, W.W., Seiford, L.M., et al., Returns to scale in different DEA models, Eur. J. Oper. Res., 2004, vol. 154, pp. 345–362. https://doi.org/10.1016/S0377-2217(03)00174-7
Sueyoshi, T. and Sekitani, K., Measurement of returns to scale using a non-radial DEA model: a range-adjusted measure approach, Eur. J. Oper. Res., 2007, vol. 176, pp. 1918–1946. https://doi.org/10.1016/j.ejor.2005.10.043
Sueyoshi, T. and Sekitani, K., An occurrence of multiple projections in DEA-based measurement of technical efficiency: theoretical comparison among DEA models from desirable properties, Eur. J. Oper. Res., 2009, vol. 196, pp. 764–794. https://doi.org/10.1016/j.ejor.2008.01.045
Krivonozhko, V.E., Førsund, F.R., and Lychev, A.V., Measurement of returns to scale using non-radial DEA models, Eur. J. Oper. Res., 2014, vol. 232, no. 3, pp. 664–670. https://doi.org/10.1016/j.ejor.2013.06.046
Mehdiloozad, M., Mirdehghan, S.M., Sahoo, B.K., et al., On the identification of the global reference set in data envelopment analysis, Eur. J. Oper. Res., 2015, vol. 245, no. 3, pp. 779–788. https://doi.org/10.1016/j.ejor.2015.03.029
Krivonozhko, V.E., Førsund, F.R., and Lychev, A.V., Returns-to-scale properties in DEA models: the fundamental role of interior points, J. Prod. Anal., 2012, vol. 38, pp. 121–130. https://doi.org/10.1007/s11123-011-0253-z
Krivonozhko, V.E., Førsund, F.R., and Lychev, A.V., Methods for determination of multiple reference sets in the DEA models, Dokl. Math., 2012, vol. 85, pp. 134–138.
Krivonozhko, V.E., Lychev, A.V., and Førsund, F.R., Measurement of returns to scale in radial DEA models, Comput. Math. Math. Phys., 2017, vol. 57, no. 1, pp. 83–93.
Førsund, F.R., Hjalmarsson, L., Krivonozhko, V.E., et al., Calculation of scale elasticities in DEA models: direct and indirect approaches, J. Prod. Anal., 2007, vol. 28, pp. 45–56. https://doi.org/10.1007/s11123-007-0047-5
Bertsimas, D. and Tsitsiklis, J.N., Introduction to Linear Optimization, Belmont, MA: Athena Sci., 1997.
Mehdiloozad, M. and Sahoo, B.K., Identifying the global reference set in DEA: an application to the determination of returns to scale, in Handbook of Operations Analytics Using Data Envelopment Analysis, Hwang, S.-N., Lee, H.-S., and Zhu, J., Eds., Boston, MA: Springer US, 2016, pp. 299–330. https://doi.org/10.1007/978-1-4899-7705-2_12
Mehdiloozad, M., Identifying the global reference set in DEA: a mixed 0-1 LP formulation with an equivalent LP relaxation, Oper. Res. Int. J., 2017, vol. 17, pp. 205–211. https://doi.org/10.1007/s12351-015-0222-9
Funding
This work was supported by the Russian Science Foundation, project no. 17-11-01353.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Translated by V. Potapchouck
Rights and permissions
About this article
Cite this article
Krivonozhko, V.E., Afanasiev, A.P., Førsund, F.R. et al. Comparison of Different Methods for Estimation of Returns to Scale in Nonradial Data Envelopment Analysis Models. Autom Remote Control 83, 1136–1148 (2022). https://doi.org/10.1134/S0005117922070098
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117922070098