Kalman-Popov-Yakubovich lemma for ordered fields | Automation and Remote Control Skip to main content
Log in

Kalman-Popov-Yakubovich lemma for ordered fields

  • Linear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

In memory of my teacher Vladimir Andreevich Yakubovich

Abstract

The Kalman-Popov-Yakubovich lemma was generalized to the case where the field of scalars is an ordered field that possesses the following property: if each value of the polynomial of one variable is the sum of squares, then the polynomial itself is the sum of squares of polynomials. The field with this property was named the sum of squares (SOS) field. The SOS-fields are, for instance, those of rational numbers, algebraic numbers, real numbers, or rational fractions of several variables, with the coefficients from the aforementioned fields. It was proved that the statement of the Kalman-Popov-Yakubovich lemma about the equivalence of the frequency domain inequality and the linear matrix inequality holds true if the SOS-field is considered as a that of scalars. An example was presented which shows that in the SOS-field the fulfillment of the frequency domain inequality does not imply solvability of the corresponding algebraic Riccati equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yakubovich, V.A., Solution of Some Matrix Inequalities Appearing in the Automatic Control Theory, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no. 6, pp. 1304–1307.

    MathSciNet  Google Scholar 

  2. Iwasaki, T. and Hara, S., Generalized KYP Lemma: Unified Frequency Domain Inequalities with Design Applications, IEEE Trans. Automat. Control, 2005, vol. 50, pp. 41–59.

    Article  MathSciNet  Google Scholar 

  3. Gusev, S.V., Kalman-Popov-Yakubovich Lemma for Matrix Frequency Domain Inequality, Syst. Control Lett., 2009, vol. 58, pp. 469–473.

    Article  MATH  MathSciNet  Google Scholar 

  4. Camlibel, M.K. and Frasca, R., Extension of Kalman-Yakubovich-Popov Lemma to Descriptor System, Syst. Control Lett., 2009, vol. 58, pp. 795–803.

    Article  MATH  MathSciNet  Google Scholar 

  5. Graham, M.R., de Oliveira, M.C., and de Callafon, R.A., An Alternative Kalman-Popov-Yakubovich Lemma and Some Extensions, Automatica, 2009, vol. 45, pp. 1489–1496.

    Article  MATH  Google Scholar 

  6. Kalman, R., Lyapunov Functions for the Problem of Lur’e in Automatic Control, in Proc. Nat. Acad. Sci. USA, 1963, vol. 49, pp. 201–205.

    Article  MATH  MathSciNet  Google Scholar 

  7. Popov, V.M., Hyperstability and Optimality of Automatic Systems with Several Control Functions, Rev. Roum. Sci. Tech.-Electrotech. Energ., 1964, vol. 9, no. 4, pp. 629–890.

    Google Scholar 

  8. Willems, J.C., Least Squares Stationary Optimal Control and the Algebraic Riccati Equation, IEEE Trans. Automat. Control, 1971, vol. 16, no. 6, pp. 621–634.

    Article  MathSciNet  Google Scholar 

  9. Yakubovich, V.A., Frequency Theorem in the Control Theory, Sib. Mat. Zh., 1973, vol. 14, pp. 386–420.

    Article  Google Scholar 

  10. Yakubovich, V.A., Frequency Theorem for the Case of Hilbertian Spaces of States and Controls and Its Application in Some Problems of Design of Optimal Control. I, II, Sib. Mat. Zh., 1974, vol. 15, no. 3, pp. 639–668; 1975, vol. 16, no. 5, pp. 1083–1102.

    MATH  Google Scholar 

  11. Likhtarnikov, A.L. and Yakubovich, V.A., Frequency Theorem for One-parameter Semigroups, Izv. Akad. Nauk SSSR, Mat., 1977, no. 4, pp. 895–911.

    Google Scholar 

  12. Rantzer, A., On the Kalman-Yakubovich-Popov Lemma, Syst. Control Lett., 1996, vol. 28, pp. 7–10.

    Article  MATH  MathSciNet  Google Scholar 

  13. Iwasaki, T., Meinsma, G., and Fu, M., Generalized S-Procedure and Finite Frequency KYP Lemma, Math. Prob. Eng., 2000, vol. 6, pp. 305–320.

    Article  MATH  MathSciNet  Google Scholar 

  14. Gusev, S.V., Structure of Semidefinite Solutions of the Uniform Generalized Lyapunov Equation and the Frequency Theorem in the Hilbertian Space, Vestn. S.-Peterburg. Gos. Univ., Ser. 1, 2005, no. 3, pp. 16–23.

    Google Scholar 

  15. Gusev, S.V., The Fenchel Duality, S-Procedure, and the Yakubovich-Kalman Lemma, Autom. Remote Control, 2006, vol. 67, no. 2, pp. 293–310.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalman, R., New Algebraic Methods in the Stability Theory, in Tr. 5 Mezhd. konf. po nelineinym kolebaniyam (Proc. 5th Int. Conf. Nonlinear Oscillations), Kiev: Int. Mat., Akad. Nauk USSR, 1970, vol. 2, pp. 189–199.

    Google Scholar 

  17. Gusev, S.V., Parameter-dependent S-Procedure and Yakubovich Lemma, http://arxiv.org/abs/math.OC/0612794, 2006, pp. 1–11.

    Google Scholar 

  18. Artin, E., Uber die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Hamburg., 1927, vol. 5, pp. 100–115.

    Article  MathSciNet  Google Scholar 

  19. Hilbert Problems, Aleksandrov, P.S., Ed., Moscow: Nauka, 1969.

    Google Scholar 

  20. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium State), Moscow: Fizmatgiz, 1978.

    Google Scholar 

  21. Gusev, S.V. and Likhtarnikov, A.L., Kalman-Popov-Yakubovich Lemma and the S-Procedure: A Historical Essay, Autom. Remote Control, 2006, vol. 67, no. 11, pp. 77–121.

    Article  MathSciNet  Google Scholar 

  22. Brockett, R.W., The Wider Influence of the Work of V.A. Yakubovich, Int. J. Robust Nonlinear Control, 2007, vol. 17, pp. 363–368.

    Article  MATH  MathSciNet  Google Scholar 

  23. Prasolov, V.V., Mnogochleny (Polynomials), Moscow: MTSNMO, 2003.

    Google Scholar 

  24. Willems, J.C., Paradigms and Puzzles in the Theory of Dynamical Systems, IEEE Trans. Automat. Control, 1991, vol. 39, pp. 259–294.

    Article  MathSciNet  Google Scholar 

  25. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1988. Translated into English under the title Theory of Matrices, New York: Chelsea, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Gusev, 2014, published in Avtomatika i Telemekhanika, 2014, No. 1, pp. 23–41.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, S.V. Kalman-Popov-Yakubovich lemma for ordered fields. Autom Remote Control 75, 18–33 (2014). https://doi.org/10.1134/S0005117914010020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117914010020

Keywords

Navigation