Degenerate problems of optimal control for discrete-continuous (hybrid) systems | Automation and Remote Control Skip to main content
Log in

Degenerate problems of optimal control for discrete-continuous (hybrid) systems

  • Linear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The notion of the degenerate problem of optimal control for the discrete-continuous systems was formulated. The main approaches to the problems of this class that were developed for the uniform continuous and discrete systems such as the transformations to the derivative systems and the method of multiple maxima, a special technique to define the Krotov functions under the like sufficient conditions, were extended to the discrete-continuous systems. The fields of possible efficient applications were indicated, and an example was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, B.M. and Rubinovich, E.Ya., Optimizatsiya dinamicheskikh sistem s impul’snymi upravleniyami (Optimization of the Dynamic Systems with Pulse Controls), Moscow: Nauka, 2005.

    Google Scholar 

  2. Gurman, V.I. and Rasina, I.V., Discrete-Continuous Representations of Impulsive Processes in the Controllable Systems, Autom. Remote Control, 2012, vol. 73, no. 8, pp. 1290–1300.

    Article  Google Scholar 

  3. Rasina, I.V., Iterative Optimization Algorithms for Discrete-Continuous Processes, Autom. Remote Control, 2012, vol. 73, no. 10, pp. 1591–1603.

    Article  Google Scholar 

  4. Gurman, V.I., Theory of Optimum Discrete Processes, Autom. Remote Control, 1973, vol. 34, no. 7, part 1, pp. 1082–1987.

    MATH  Google Scholar 

  5. Krotov, V.F., Sufficient Optimality Conditions for the Discrete Controllable Systems, Dokl. Akad. Nauk SSSR, 1967, vol. 172, no. 1, pp. 18–21.

    MathSciNet  Google Scholar 

  6. Gurman, V.I., Baturin, V.A., and Rasina, I.V., Priblizhennye metody optimal’nogo upravleniya (Approximate Methods of Optimal Control), Irkutsk: Irkut. Univ., 1983.

    Google Scholar 

  7. Gurman, V.I. and Rasina, I.V., Complex Processes, in Metody resheniya zadach optimal’nogo upravleniya na osnove printsipa rasshireniya (Methods to Solve the Optimal Control Problems on the Basis of the Principle of Extension), Novosibirsk: Nauka, 1990, pp. 84–94.

    Google Scholar 

  8. Gurman, V.I., Vyrozhdennye zadachi optimal’nogo upravleniya (Degenerate Problems of Optimal Control), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  9. Gurman, V.I. and Ni Ming Kang, Degenerate Problems of Optimal Control. I, II, III, Autom. Remote Control, 2011, vol. 72, no. 3, pp. 497–511; no. 4, pp. 727–739; no. 5, pp. 929–943.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurman, V.I., Printsip rasshireniya v zadachakh upravleniya (Principle of Extension in the Control Problems), Moscow: Nauka, 1997.

    MATH  Google Scholar 

  11. Gurman, V.I., Turnpike Solutions in the Procedures Seeking Optimal Controls, Autom. Remote Control, 2003, vol. 64, no. 3, pp. 399–408.

    Article  MathSciNet  MATH  Google Scholar 

  12. Krotov, V.F., Methods for Solving Variational Problems on the Basis of the Sufficient Conditions for an Absolute Minimum. I, Autom. Remote Control, 1962, vol. 23, no. 12, pp. 1473–1484.

    MathSciNet  Google Scholar 

  13. Krotov, V.F., Bukreev, V.Z., and Gurman, V.I., Novye metody variatsionnogo ischisleniya v dinamike poleta (New Methods of Variational Calculus in the Flight Dynamics), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  14. Gurman, V.I., Optimal Processes of Singular Control, Autom. Remote Control, 1965, vol. 26, no. 5, pp. 783–792.

    MathSciNet  MATH  Google Scholar 

  15. Krotov, V.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Methods and Problems of Optimal Control), Moscow: Nauka, 1973.

    Google Scholar 

  16. Gurman, V.I. and Dykhta, V.A., Singular Problems of Optimal Control and the Method of Multiple Maxima, Autom. Remote Control, 1977, vol. 38, no. 3, part 1, pp. 343–350.

    MATH  Google Scholar 

  17. Modeli upravleniya prirodnymi resursami (Models of Natural Resource Control), Gurman, V.I., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  18. Vasil’ev, S.N., Modelirovanie i upravlenie protsessami regional’nogo razvitiya (Modeling and Control of the Regional Development Processes), Moscow: Fizmatlit, 2001.

    MATH  Google Scholar 

  19. Gurman, V.I., The Extension Principle in the Problems of Sustainable Development, Moscow: Fizmatlit, 2006.

    Google Scholar 

  20. Gurman, V.I. and Khaltar, D., Optimal Control of Resources with Allowance for Innovations, Autom. Remote Control, 2011, vol. 72, no. 7, pp. 1357–1363.

    Article  MathSciNet  MATH  Google Scholar 

  21. Intriligator, M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya (Mathematical Optimization Methods and the Economic Theory), Moscow: Progress, 1975.

    Google Scholar 

  22. Sethi, S.P. and Tomson, G.L., Optimal Control Theory. Application to Management Science, Boston: Martinus Nijhoff, 1981.

    Google Scholar 

  23. Dykhta, V.A. and Samsonyuk, O.N., Optimal’noe impul’snoe upravlenie s prilozheniyami (Optimal Pulse Control with Applications), Moscow: Fizmatlit, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Rasina, 2013, published in Avtomatika i Telemekhanika, 2013, No. 2, pp. 38–52.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasina, I.V. Degenerate problems of optimal control for discrete-continuous (hybrid) systems. Autom Remote Control 74, 196–206 (2013). https://doi.org/10.1134/S0005117913020033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913020033

Keywords

Navigation