A new mathematical model for representing the geometric variations of lines is extended to include probabilistic representations of one-dimensional (1D) clearance, which arise from positional variations of the axis of a hole, the size of the hole, and a pin-hole assembly. The model is compatible with the ASME/ ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map (T-Map) (Patent No. 69638242), a hypothetical volume of points that models the 3D variations in location and orientation for a segment of a line (the axis), which can arise from tolerances on size, position, orientation, and form. Here, it is extended to model the increases in yield that occur when maximum material condition (MMC) is specified and when tolerances are assigned statistically rather than on a worst-case basis; the statistical method includes the specification of both size and position tolerances on a feature. The frequency distribution of 1D clearance is decomposed into manufacturing bias, i.e., toward certain regions of a Tolerance-Map, and into a geometric bias that can be computed from the geometry of multidimensional T-Maps. Although the probabilistic representation in this paper is built from geometric bias, and it is presumed that manufacturing bias is uniform, the method is robust enough to include manufacturing bias in the future. Geometric bias alone shows a greater likelihood of small clearances than large clearances between an assembled pin and hole. A comparison is made between the effects of choosing the optional material condition MMC and not choosing it with the tolerances that determine the allowable variations in position.

1.
American National Standard ASME Y14.5M
, 1994,
Dimensioning and Tolerancing
,
The American Society of Mechanical Engineers
,
New York
.
2.
International Organization for Standardization ISO 1101
, 1983, Geometric Tolerancing—Tolerancing of Form, Orientation, Location, and Run-Out—Generalities, Definitions, Symbols, and Indications on Drawings.
3.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
, 2002, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
609
622
.
4.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2001, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
609
622
.
5.
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2002, “
Geometric tolerances: A new application for line geometry and screws
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
C1
), pp.
95
104
.
6.
Bhide
,
S.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2003, “
A New Mathematical Model for Geometric Tolerances as Applied to Axes
,”
CD Proceedings of the ASME Design Technical Conference
,
Chicago, IL
, Paper No. DETC/DAC-48736.
7.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2007, “
Tolerance-Maps Applied to a Point-Line Cluster of Features
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
782
792
.
8.
Giordano
,
M.
,
Kataya
,
B.
, and
Samper
,
S.
, 2001, “
Tolerance Analysis and Synthesis by Means of Clearance and Deviation Spaces
,”
Geometric Product Specification and Verification
,
Proceedings of the Seventh CIRP International Seminar on Computer-Aided Tolerancing, Ecole Norm. Supérieure
,
Cachan, France
, Apr. 24–25,
P.
Bourdet
and
L.
Mathieu
, eds.,
Kluwer
,
Dordrecht
, pp.
345
354
.
9.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
, 1999, “
Mathematical Representation of Tolerance Zones
,”
Global Consistency of Tolerances
,
Proceedings of the Sixth CIRP International Seminar on Computer-Aided Tolerancing
,
University of Twente
,
Enschede, Netherlands
, Mar. 22–24,
F.
van Houten
and
H.
Kals
, eds., Kluwer, Dordrecht, pp.
177
186
.
10.
Roy
,
U.
, and
Li
,
B.
, 1999, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects-I: Form Tolerance
,”
Comput.-Aided Des.
0010-4485,
30
, pp.
151
161
.
11.
Roy
,
U.
, and
Li
,
B.
, 1999, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects-II: Size, Orientation and Position Tolerances
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
273
285
.
12.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
, 1994, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
0934-9839,
6
, pp.
191
210
.
13.
Davidson
,
J. K.
, and
Hunt
,
K. H.
, 2004,
Robots and Screw Theory
,
Oxford University Press
,
Oxford, UK
.
14.
Lee
,
S.
, and
Yi
,
C.
, 1998, “
Statistical Representation and Computation of Tolerance and Clearance for Assemblability Evaluation
,”
Robotica
0263-5747,
16
, pp.
251
264
.
15.
Lehtihet
,
E. A.
, and
Gunasena
,
U. N.
, 1988, “
Models for the Position and Size Tolerance of a Single Hole
,”
Presented at the Winter Annual Meeting of the ASME
,
Chicago, IL
, Nov., Manufacturing Metrology, ASME PED-29, pp
49
63
.
16.
Teissandier
,
D.
,
Couétard
,
Y.
, and
Gérard
,
A.
, 1999, “
A Computer Aided Tolerancing Model: Proportioned Assembly Clearance Volume
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
805
817
.
17.
Wu
,
W.
, and
Rao
,
S. S.
, 2004, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
581
592
.
18.
Giordano
,
M.
,
Petit
,
J.
, and
Samper
,
S.
, 2003, “
Minimum Clearance for Tolerance Analysis of a Vacuum Pump
,” CD-ROM,
Eighth CIRP Seminar on Computer Aided Tolerancing
,
Charlotte, NC
.
19.
Ameta
,
G.
, 2006, “
Statistical Tolerance Analysis and Allocation for Assemblies Using Tolerance-Maps
,” Ph.D. thesis, Arizona State University.
20.
Coxeter
,
H. S. M.
, 1969,
Introduction to Geometry
, 2nd ed.,
Wiley
,
New York
.
21.
Sommerville
,
D. M. Y.
, 1929,
An Introduction to the Geometry of n Dimensions
,
Methuen
,
London
.
22.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J. P.
, 2007, “
Tolerance Analysis and Synthesis by Means of Deviation Domains, Axis-Symmetric Cases
,”
Models for Computer-Aided Tolerancing in Design and Manufacturing
,
Proceedings of the Ninth CIRP International Seminar on CAT
,
Arizona State University
,
Tempe, AZ
, Apr. 10–12,
J. K.
Davidson
, ed.,
Springer
,
Dordrecht
, pp.
85
94
.
23.
Bhide
,
S.
, 2002, A New Mathematical Model for Geometric Tolerances Applied to Cylindrical Features, M.S. thesis, Arizona State University.
25.
Sheldon
,
M. R.
, 2006,
A First Course in Probability
, 7th ed.,
Pearson Prentice-Hall
,
Upper Saddle River, NJ
.
26.
Frigo
,
M.
, and
Johnson
,
S. G.
, 2005, “
The Design and Implementation of FFTW3
,”
Proc. IEEE
0018-9219,
93
(
2
), pp.
216
231
(http://www.fftw.org/http://www.fftw.org/).
27.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2007, “
Influence of Form on Frequency Distribution for 1-D Clearance Which is Generated from Tolerance-Maps
,” CD-Rom
Proceedings of the Tenth CIRP International Seminar on Computer-Aided Tolerancing
,
Erlangen, Germany
, Mar. 21–23.
28.
Bhide
,
S.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2007, “
Tolerance-Maps Applied to the Straightness and Orientation of an Axis
,”
Models for Computer-Aided Tolerancing in Design and Manufacturing, Proceedings of the Ninth CIRP International Seminar on CAT
,
Arizona State University
,
Tempe, AZ
, Apr. 10–12,
J. K.
Davidson
, ed.,
Springer
,
Dordrecht
, pp.
45
54
.
29.
Hunt
,
K. H.
, 1990,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford, UK
.
30.
Ball
,
R. S.
, 1998,
The Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
. (Originally published 1876 and revised by the author in 1900; now reprinted with an introduction by H. Lipkin and J. Duffy.)
31.
Silvester
,
J. R.
, 2001,
Geometry: Ancient & Modern
,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.