The presented approach to discretization of functionally defined heterogeneous objects is oriented towards applications associated with numerical simulation procedures, for example, finite element analysis (FEA). Such applications impose specific constraints upon the resulting surface and volume meshes in terms of their topology and metric characteristics, exactness of the geometry approximation, and conformity with initial attributes. The function representation of the initial object is converted into the resulting cellular representation described by a simplicial complex. We consider in detail all phases of the discretization algorithm from initial surface polygonization to final tetrahedral mesh generation and its adaptation to special FEA needs. The initial object attributes are used at all steps both for controlling geometry and topology of the resulting object and for calculating new attributes for the resulting cellular representation.

1.
Pasko
,
A.
,
Adzhiev
,
V.
,
Schmitt
,
B.
, and
Schlick
,
C.
,
2001
, “
Constructive Hypervolume Modelling
,”
Graphical Models, a special issue on Volume Modeling
,
63
(
6
), pp.
413
442
.
2.
Adzhiev, V., Kartasheva, E., Kunii, T., Pasko, A., and Schmitt, B., 2002, “Cellular-functional Modeling of Heterogeneous Objects,” Proc. 7th ACM Symposium on Solid Modeling and Applications, Kunwoo Lee, and N. Patrikalakis, eds., Saarbrucken, Germany, ACM Press, pp. 192–203.
3.
Biswas, A., Shapiro, V., and Tsukanov, I., 2002, “Heterogeneous Material Modeling with Distance Fields,” Technical Report SAL 2002-4, University of Wisconsin-Madison, USA.
4.
Shapiro
,
V.
, and
Tsukanov
,
I.
,
1999
, “
Meshfree Simulation of Deforming Domains
,”
Comput.-Aided Des.
,
31
(
7
), pp.
459
471
.
5.
Frey, P. J., and George, P.-L., 2000, Mesh Generation: Application to Finite Elements, HERMES Science Europe, OXFORD & PARIS, p. 814.
6.
Adzhiev
,
V.
,
Kartasheva
,
E.
,
Kunii
,
T.
,
Pasko
,
A.
, and
Schmitt
,
B.
,
2002
, “
Hybrid Cellular-functional Modeling of Heterogeneous Objects
,”
J. Comput. Inf. Sci. Eng.
,
2
(
4
), pp.
192
203
.
7.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modelling: Concepts, Implementation and Applications
,”
Visual Comput.
,
11
(
8
), pp.
429
446
.
8.
Lohner
,
R.
,
1997
, “
Automatic Unstructured Grid Generators
,”
Finite Elem. Anal. Design
,
25
, pp.
114
134
.
9.
Kumar, V., and Dutta, D., 1997, “An Approach to Modeling Multi-material Objects,” Proc. 4th Symposium on Solid Modeling and Applications, ACM SIGGRAPH, Atlanta, pp. 336–345.
10.
Kumar
,
V.
,
Burns
,
D.
,
Dutta
,
D.
, and
Hoffmann
,
C.
,
1999
, “
A Framework for Object Modeling
,”
Comput.-Aided Des.
,
31
(
9
), pp.
41
556
.
11.
Shin
,
K.
, and
Dutta
,
D.
,
2001
, “
Constructive Representation of Heterogeneous Objects
,”
J. Comput. Inf. Sci. Eng.
,
1
(
3
), pp.
205
217
.
12.
Chen
,
M.
, and
Tucker
,
J.
,
2000
, “
Constructive Volume Geometry
,”
Computer Graphics Forum
,
19
(
4
), pp.
281
293
.
13.
Jackson
,
T. R.
,
Liu
,
H.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
,
1999
, “
Modeling and Designing Functionally Graded Material Components for Fabrication with Local Composition Control
,”
Mater. Des.
,
20
(
2/3
), pp.
63
75
.
14.
Martin, W., and Cohen, E., 2001, “Representation and Extraction of Volumetric Attributes Using Trivariate Splines: a Mathematical Framework,” Proc. 6th ACM Symposium on Solid Modeling and Applications, D. Anderson, K. Lee, eds., Ann Arbor, ACM Press, pp. 234–240.
15.
Park, S. M., Crawford, R., and Beaman, J., 2001, “Volumetric Multi-texturing for Functionally Gradient Material Representation,” Proc. 6th ACM Symposium on Solid Modeling and Applications, D. Anderson, and K. Lee, eds., Ann Arbor, ACM Press, pp. 216–224.
16.
Wyvill
,
G.
,
McPheeters
,
C.
, and
Wyvill
,
B.
,
1986
, “
Data Structure for Soft Objects
,”
Visual Comput.
,
2
(
4
), pp.
27
23
.
17.
Bloomenthal, J., 1994, “An Implicit Surface Polygonizer,” Graphics Gems IV, P. Heckbert, ed., Academic Press, pp. 324–349.
18.
Hartmann
,
E.
,
1998
, “
A Marching Method for the Triangulation of Surfaces
,”
Visual Comput.
,
14
(
3
), pp.
95
108
.
19.
Karkanis
,
T.
, and
Stewart
,
A. J.
,
2001
, “
Curvature-dependent Triangulation of Implicit Surfaces
,”
IEEE Comput. Graphics Appl.
,
21
(
2
), pp.
60
69
.
20.
Pasko
,
A.
,
Pilyugin
,
V.
, and
Pokrovskiy
,
V.
,
1986
, “
Geometric Modeling in the Analysis of Trivariate Functions,” Communications of Joint Institute of Nuclear Research, P10-86-310, Dubna, USSR (in Russian). English translation: 1988
,
Comput. Graphics
,
12
(
3/4
), pp.
457
465
.
21.
Lorensen
,
W.
, and
Cline
,
H.
,
1987
, “
Marching Cubes: a High Resolution 3D Surface Construction Algorithm
,”
Comput. Graph.
,
21
(
4
), pp.
163
169
.
22.
Nielson, G., and Hamann, B., 1991, “The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,” Proc. Visualization ’91, IEEE Computer Society Press, pp. 29–38.
23.
Schmidt
,
M.
,
1993
, “
Cutting Cubes-Visualizing Implicit Surfaces by Adaptive Polygonization
,”
Visual Comput.
,
10
(
2
), pp.
101
115
.
24.
Kobbelt, L., Botsch, M., Schwanecke, U., and Seidel, H.-P., 2001, “Feature Sensitive Surface Extraction from Volume Data,” Proc. SIGGRAPH 2001, pp. 57–66.
25.
Ohtake, Y., Belyaev, A., and Pasko, A., 2001, “Dynamic Meshes for Accurate Polygonization of Implicit Surfaces with Sharp Features,” Shape Modeling International 2001, IEEE Computer Society, pp. 74–81.
26.
Ohtake Y., and Belyaev A., 2002, “Dual/primal Mesh Optimization for Polygonized Implicit Surfaces,” Proc. 7th ACM Symposium on Solid Modeling and Applications, K. Lee and N. Patrikalakis, eds., ACM Press, Saarbrucken, pp. 171–178.
27.
Frey
,
P. J.
, and
Borouchaki
,
H.
,
1998
, “
Geometric Surface Mesh Optimization
,”
Computing and Visualization in Science
,
1
(
3
), pp.
113
121
.
28.
Kobbelt, L., 2000, “3-Subdivision,” Proc. SIGGRAPH 2000, pp. 103–112.
29.
Garland M., and Heckbert, P. S., 1997, “Surface Simplification Using Error Metrics,” Proc. SIGGRAPH 2001, pp. 209–216.
30.
Sheffer
,
A.
,
2001
, “
Model Simplification for Meshing Using Face Clustering
,”
Comput.-Aided Des.
,
33
(
13
), pp.
925
934
.
31.
Owen, S. J., 1998, “A Survey of Unstructured Mesh Generation Technology,” Proc. 7th International Meshing Roundtable, Dearborn, MI.
32.
Sethian, J., A., 1999, Level Set Methods and Fast Marching Methods, Cambridge University Press.
33.
Frank
,
K.
, and
Lang
,
U.
,
2000
, “
Gradient and Curvature Approximation in Data-dependent Surface Simplification
,”
Computing and Visualization in Science
,
2
(
4
), pp.
221
228
.
34.
Freitag
,
L.
, and
Ollivier-Gooch
,
C.
,
1997
, “
Tetrahedral Mesh Improvement Using Swapping and Smoothing
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
3937
4002
.
35.
Rivara
,
M.
, and
Levin
,
C.
,
1992
, “
A 3D Refinement Algorithm Suitable for Adaptive and Multi-grid Techniques
,”
J. Comput. Appl. Math.
,
8
, pp.
281
290
.
36.
Liu
,
A.
, and
Joe
,
B.
,
1994
, “
On the Shape of Tetrahedra from Bisection
,”
Math. Comput.
,
63
, pp.
141
154
.
37.
Liu
,
A.
, and
Joe
,
B.
,
1995
, “
Quality Local Refinement of Tetrahedral Meshes Based on Bisection
,”
SIAM J. Sci. Comput. (USA)
,
16
, pp.
1269
1291
.
You do not currently have access to this content.