%PDF-1.4
%
4 0 obj
(I Introduction)
endobj
5 0 obj
<< /D (section.2) /S /GoTo >>
endobj
8 0 obj
(II Problem Statement)
endobj
9 0 obj
<< /D (section.3) /S /GoTo >>
endobj
12 0 obj
(III Preliminaries)
endobj
13 0 obj
<< /D (subsection.3.1) /S /GoTo >>
endobj
16 0 obj
(III-A Gaussian Processes \(GPs\))
endobj
17 0 obj
<< /D (subsection.3.2) /S /GoTo >>
endobj
20 0 obj
(III-B Bayesian Optimization)
endobj
21 0 obj
<< /D (section.4) /S /GoTo >>
endobj
24 0 obj
(IV Reinforcement Learning with Simulations)
endobj
25 0 obj
<< /D (subsection.4.1) /S /GoTo >>
endobj
28 0 obj
(IV-A GP Model for Multiple Information Sources)
endobj
29 0 obj
<< /D (subsection.4.2) /S /GoTo >>
endobj
32 0 obj
(IV-B Optimization)
endobj
33 0 obj
<< /D (section.5) /S /GoTo >>
endobj
36 0 obj
(V Experimental Results)
endobj
37 0 obj
<< /D (subsection.5.1) /S /GoTo >>
endobj
40 0 obj
(V-A Experimental Setup)
endobj
41 0 obj
<< /D (subsection.5.2) /S /GoTo >>
endobj
44 0 obj
(V-B Controller Tuning Problem)
endobj
45 0 obj
<< /D (subsection.5.3) /S /GoTo >>
endobj
48 0 obj
(V-C Bayesian Optimization Settings)
endobj
49 0 obj
<< /D (subsection.5.4) /S /GoTo >>
endobj
52 0 obj
(V-D Results)
endobj
53 0 obj
<< /D (section.6) /S /GoTo >>
endobj
56 0 obj
(VI Conclusion)
endobj
57 0 obj
<< /D (section*.7) /S /GoTo >>
endobj
60 0 obj
(References)
endobj
61 0 obj
<< /D [ 62 0 R /Fit ] /S /GoTo >>
endobj
66 0 obj
<< /Filter /FlateDecode /Length 5268 >>
stream
x;ْF
>md(ލ ݻUg"FC, nU8H*;l?f?}7Y2#=fq$%^(=lg]<۳) _Ņsalrπ_v;.saڼ*r˅͟|fdh˶Y|zY0f+?Sx;yBG^|cq7Ʃn7y{Kmr#rjcmW3UgU ռSțlMx,|e<)2Kt+T::NLUC4P%-ygolŗL.?ib4U)2DwĕlYPaO>}ޔ{[P٢vmߊdUX!P/pSnkk^jsnƐnϛo8e'X&QsY&77<]ݡA4v#ÉdI{8@6KU!ї()*TBQ릭ͦ'OMdd~ j{79
+?TeK*cUJ7Cm?TXvZZK\siI)AMO#ևCp#?h,ߜ |W-
Q扒y1