Transient Properties of Many-Server Queues and Related QBDs | Queueing Systems Skip to main content
Log in

Transient Properties of Many-Server Queues and Related QBDs

  • Published:
Queueing Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The time τ(n) of first passage from queue length x to queue length n>x in a many-server queue with both the arrival process and service intensities governed by a finite Markov process is considered. The mean and the Laplace transform are computed as solutions of systems of linear equations coming out by optional stopping of a martingale obtained as a stochastic integral of the exponential Wald martingale for Markov additive processes. Compared to existing techniques for QBD's, the approach has the advantage of being far more efficient for large n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aldous and L. Shepp, The least variable phase type distribution is Erlang, Stochastic Models 3 (1987) 467–473.

    Google Scholar 

  2. S. Asmussen, Extreme value theory for queues via cycle maxima, Extremes 1 (1998) 137–168.

    Google Scholar 

  3. S. Asmussen, Applied Probability and Queues, 2nd ed. (Springer, Berlin, 2003).

    Google Scholar 

  4. S. Asmussen, F. Avram and M.R. Pistorius, Russian and American put options under exponential phase-type Lévy models, Stochastic Process. Appl. (2003) to appear.

  5. S. Asmussen, M. Jobmann and H.P. Schwefel, Explicit buffer overflow calculations for queues via martingales, Queueing Systems 42 (2002) 63–90.

    Google Scholar 

  6. S. Asmussen and O. Kella, A multi-dimensional martingale for Markov additive processes and its applications, Adv. in Appl. Probab. 32 (2000) 376–393.

    Google Scholar 

  7. S. Asmussen and O. Kella, On optional stopping of some exponential martingales for Lévy processes with or without reflection, Stochastic Process. Appl. 91 (2001) 47–55.

    Google Scholar 

  8. S. Asmussen and J.R. Møller, Calculation of the steady-state waiting time distribution in GI/PH/c and MAP/PH/c queues, Queueing Systems 37 (2001) 9–29.

    Google Scholar 

  9. F. Baccelli and A.M. Makowski, Dynamic, transient and stationary behaviour of the M/G/1 queue via martingales, Ann. Probab. 17 (1989) 1691–1699.

    Google Scholar 

  10. F. Ball and V.T. Stefanov, Further approaches to computing fundamental characteristics of birth-death processes, J. Appl. Probab. 38 (2001) 995–1005.

    Google Scholar 

  11. A. Dassios and P. Embrechts, Martingales and insurance risk, Stochastic Models 5 (1989) 181–217.

    Google Scholar 

  12. C.D. Fuh and T. Lai, Wald's equation, first passage times and moments of ladder variables in Markov random walks, J. Appl. Probab. 35 (1998) 566–580.

    Google Scholar 

  13. D.P. Gaver, P.A. Jacobs and G. Latouche, Finite birth-and-death models in randomly changing environments, Adv. in Appl. Probab. 16 (1984) 715–731.

    Google Scholar 

  14. P. Glasserman and S.-G. Kou, Limits of first passage times to rare sets in regenerative processes, Ann. Appl. Probab. 5 (1995) 424–445.

    Google Scholar 

  15. B.V. Gnedenko and I.N. Kovalenko, Introduction to Queueing Theory, 2nd ed. (Birkhäuser, Basel, 1989).

    Google Scholar 

  16. M. Jacobsen, Martingales and the Distribution of the Time to Ruin (MaPhySto, Aarhus, 2002).

    Google Scholar 

  17. V. Kalashnikov, Regenerative Processes (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  18. V. Kalashnikov, Mathematical Methods in Queueing Theory (Kluwer Academic, Dordrecht, 1994).

    Google Scholar 

  19. V. Kalashnikov, Geometric Sums: Bounds for Rare Events with Applications (Kluwer Academic, Dordrecht, 1997).

    Google Scholar 

  20. J. Keilson, A limit theorem for passage times in ergodic regenerative processes, Ann. Math. Statist. 37 (1966) 866–870.

    Google Scholar 

  21. J. Keilson, Markov Chain Models — Rarity and Exponentiality (Springer, Berlin, 1979).

    Google Scholar 

  22. O. Kella and W. Stadje, On hitting times for compound Poisson dams with exponential jumps and linear release rate, J. Appl. Probab. 38 (2001) 781–786.

    Google Scholar 

  23. O. Kella and W. Whitt, Useful martingales for stochastic storage processes with Lévy input, J. Appl. Probab. 29 (1992) 396–403.

    Google Scholar 

  24. G. Latouche, C.E.M. Pearce and P.G. Taylor, Invariant measures for quasi-birth-and-death processes, Stochastic Models 14 (1998) 443–460.

    Google Scholar 

  25. G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling (SIAM, Philadelphia, PA, 1999).

    Google Scholar 

  26. M.F. Neuts, A versatile Markovian point process, J. Appl. Probab. 16 (1979) 764–779.

    Google Scholar 

  27. M.F. Neuts, Models based on the Markovian arrival process, IEICE Trans. Comm. E 75-B (1992) 1255–1265.

    Google Scholar 

  28. J. Preater, On the severity of M/M/∞ congested episodes, J. Appl. Probab. 39 (2002) 228–230.

    Google Scholar 

  29. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed. (Springer, Berlin, 1999).

    Google Scholar 

  30. P. Robert, Réseaux et Files d'Attente: Méthodes Probabilistes (Springer, Berlin, 2000).

    Google Scholar 

  31. K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmussen, S., Pihlsgård, M. Transient Properties of Many-Server Queues and Related QBDs. Queueing Systems 46, 249–270 (2004). https://doi.org/10.1023/B:QUES.0000027986.41904.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:QUES.0000027986.41904.05

Navigation