Socratic Proofs | Journal of Philosophical Logic
Skip to main content

Socratic Proofs

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

Our aim is to express in exact terms the old idea of solving problems by pure questioning. We consider the problem of derivability: “Is A derivable from Δ by classical propositional logic?”. We develop a calculus of questions E *; a proof (called a Socratic proof) is a sequence of questions ending with a question whose affirmative answer is, in a sense, evident. The calculus is sound and complete with respect to classical propositional logic. A Socratic proof in E * can be transformed into a Gentzen-style proof in some sequent calculi. Next we develop a calculus of questions E **; Socratic proofs in E ** can be transformed into analytic tableaux. We show that Socratic proofs can be grounded in Inferential Erotetic Logic. After a slight modification, the analyzed systems can also be viewed as hypersequent calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avron, A. (1996) The method of hypersequents in the proof theory of propositional nonclassical logics, in W. Hodges et al. (eds.), Logic: Foundations to Applications, Oxford Science Publications, Clarendon Press, Oxford, pp. 1-32.

    Google Scholar 

  • Batens, D. and Provijn, D. (2001) Pushing the search paths in the proofs. A study in proof heuristics, Logique et Analyse 173–175, 113-134.

    Google Scholar 

  • Beth, E. M. (1962) Formal Methods, D. Reidel, Dordrecht.

    Google Scholar 

  • Degtyarev, A. and Voronkov, A. (2001) The inverse method, in A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Vol. 1, Elsevier, Amsterdam, pp. 181-269.

    Google Scholar 

  • Gabbay, D. and Olivetti, N. (2000) Goal-Directed Proof Theory, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Harrah, D. (2002) The logic of questions, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 8, 2nd edn, Kluwer Academic Piublishers, Dordrecht, pp. 1-60.

    Google Scholar 

  • Hintikka, J. (1999) Inquiry as Inquiry: A Logic of Scientific Discovery, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hodges, W. (2001) Elementary predicate logic, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 1, 2nd edn, pp. 1-129.

  • Kubiński, T. (1980) An Outline of the Logical Theory of Questions, Akademie-Verlag, Berlin.

    Google Scholar 

  • Negri, S. and von Plato, J. (2001) Structural Proof Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rasiowa, H. and Sikorski, R. (1960) On the Gentzen theorem, Fund. Math. 48, 58-69.

    Google Scholar 

  • Shoesmith, D. J. and Smiley, T. J. (1978) Multiple-Conclusion Logic, Cambridge University Press, Cambridge.

    Google Scholar 

  • Smullyan, R. (1968) First-Order Logic, Springer, New York.

    Google Scholar 

  • Sundholm, G. (2001) Systems of deduction, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2, 2nd edn, pp. 1-52.

  • Urbański, M. (2001) Remarks on synthetic tableaux for classical propositional calculus, Bull. Section of Logic 30(4), 194-204.

    Google Scholar 

  • Wiśniewski, A. (1994) Erotetic implications, J. Philos. Logic 23(2), 173-195.

    Google Scholar 

  • Wiśniewski, A. (1995) The Posing of Questions: Logical Foundations of Erotetic Inferences, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Wiśniewski, A. (1996) The logic of questions as a theory of erotetic arguments, Synthese 109(2), 1-25.

    Google Scholar 

  • Wiśniewski, A. (2001) Questions and inferences, Logique et Analyse 173–175, 5-43.

    Google Scholar 

  • Wiśniewski, A. (2003) Erotetic search scenarios, Synthese 134(3), 389-427.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiśniewski, A. Socratic Proofs. Journal of Philosophical Logic 33, 299–326 (2004). https://doi.org/10.1023/B:LOGI.0000031374.60945.6e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:LOGI.0000031374.60945.6e