Complete Spans on Hermitian Varieties | Designs, Codes and Cryptography Skip to main content
Log in

Complete Spans on Hermitian Varieties

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let L be a general linear complex in PG(3, q) for any prime power q. We show that when GF(q) is extended to GF(q 2), the extended lines of L cover a non-singular Hermitian surface HH(3, q 2) of PG(3, q 2). We prove that if Sis any symplectic spread PG(3, q), then the extended lines of this spread form a complete (q 2 + 1)-span of H. Several other examples of complete spans of H for small values of q are also discussed. Finally, we discuss extensions to higher dimensions, showing in particular that a similar construction produces complete (q 3 + 1)-spans of the Hermitian variety H(5, q 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math., Vol. 76 (1984) pp. 469–514.

    Google Scholar 

  2. S. Ball, On ovoids of O(5, q), preprint.

  3. R. H. Bruck, Construction problems of finite projective planes, Combinatorial Mathematics and its Applications, Univ. of North Carolina Press, Chapel Hill (1969) pp. 426–514.

    Google Scholar 

  4. J. Cannon and C. Playoust, An Introduction to MAGMA, University of Sydney Press, Sydney (1993).

    Google Scholar 

  5. A. Cossidente and G. Korchmáros, Transitive ovoids of the Hermitian surface of PG(3, q2), q even, J. Combin. Theory Ser. A, Vol. 101 (2003) pp. 117–130.

    Google Scholar 

  6. R. H. Dye, New families of complete caps, and the asymptotic size of the largest caps, of quadrics over prime fields, Geom. Dedicata, Vol. 74 (1999) pp. 147–164.

    Google Scholar 

  7. G. L. Ebert and J.W. P. Hirschfeld, Complete systems of lines on a Hermitian surface over a finite field, Des. Codes Cryptogr., Vol. 17 (1999) pp. 253–268.

    Google Scholar 

  8. J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford (1985).

    Google Scholar 

  9. J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford University Press, Oxford (1991).

    Google Scholar 

  10. P. B. Kleidman, The Subgroup Structure of Some Finite Simple Groups, Ph.D. Thesis, Cambridge (1987).

  11. S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics, Vol. 104, Pitman, Boston-London-Melbourne (1984).

    Google Scholar 

  12. B. Segre, Forme e geometrie hermitiane con particolare riguardo al caso finito, Ann. Mat. Pura Appl., Vol. 70 (1965) pp. 1–201.

    Google Scholar 

  13. J. A. Thas, A note on spreads and partial spreads of Hermitian varieties, Simon Stevin, Vol. 63 (1989) pp. 101–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguglia, A., Cossidente, A. & Ebert, G.L. Complete Spans on Hermitian Varieties. Designs, Codes and Cryptography 29, 7–15 (2003). https://doi.org/10.1023/A:1024179703511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024179703511

Navigation