Identifying nearly minimal Gödel numbers from additional information | Annals of Mathematics and Artificial Intelligence Skip to main content
Log in

Identifying nearly minimal Gödel numbers from additional information

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

A new identification type close to the identification of minimal Gödel numbers is considered. The type is defined by allowing as input both the graph of the target function and an arbitrary upper bound of the minimal index of the target function in a Gödel numbering of all partial recursive functions. However, the result of the inference has to be bounded by a fixed function from the given bound. Results characterizing the dependence of this identification type from the underlying numbering are obtained. In particular, it is shown that for a wide class of Gödel numberings, the class of all recursive functions can be identified even for small bounding functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R.V. Freivald and R. Wiehagen, Inductive inference with additional information, EIK 15(4) (1979) 179–185.

    MATH  MathSciNet  Google Scholar 

  2. R. Wiehagen, Limes-Erkennung rekursiver Funktionen durch spezielle Strategien, EIK 12(1/2) (1976) 93–99.

    MATH  MathSciNet  Google Scholar 

  3. E.M. Gold, Limiting recursion, Journal of Symbolic Logic 30 (1965) 28–48.

    Article  MATH  MathSciNet  Google Scholar 

  4. C.P. Schnorr, Optimal enumerations and optimal Gödel numberings, Mathematical Systems Theory 8(2) (1974) 182–191.

    Article  MathSciNet  Google Scholar 

  5. M. Blum, A machine-independent theory of the complexity of recursive functions, Journal of the Association for Computing Machinery 14 (1967) 322–336.

    MATH  MathSciNet  Google Scholar 

  6. H. Rogers, Jr., Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York, 1967).

    Google Scholar 

  7. R. Freivalds, Inductive inference of recursive functions: qualitative theory, in: Lecture Notes in Computer Science 502 (1991) pp. 77–110.

    MathSciNet  Google Scholar 

  8. A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems of Information Transmission 1(1) (1965) 1–7.

    MATH  MathSciNet  Google Scholar 

  9. R. Freivalds, Effective operations and functionals computable in the limit, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 24 (1978) 193–206 (in Russian).

    MATH  MathSciNet  Google Scholar 

  10. S. Jain, An infinite class of functions identifiable using minimal programs in all Kolmogorov numberings, International Journal of Foundations of Computer Science 6 (1995) 89–94.

    Article  MATH  Google Scholar 

  11. R. Friedberg, Three theorems on recursive enumeration, Journal of Symbolic Logic 23 (1958) 309–316.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freivalds, R., Botuscharov, O. & Wiehagen, R. Identifying nearly minimal Gödel numbers from additional information. Annals of Mathematics and Artificial Intelligence 23, 199–209 (1998). https://doi.org/10.1023/A:1018920425684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018920425684

Keywords

Navigation