Abstract
A secret sharing scheme for an incomplete access structure (Γ,Δ) is a method of distributing information about a secret among a group of participants in such a way that sets of participants in Γ can reconstruct the secret and sets of participants in Δ can not obtain any new information about the secret. In this paper we present a more precise definition of secret sharing schemes in terms of information theory, and a new decomposition theorem. This theorem generalizes previous decomposition theorems and also works for a more general class of access structures. We demonstrate some applications of the theorem.
Similar content being viewed by others
References
P. Beguin and A. Cresti, General short computational secret sharing schemes, Adv. in Cryptology: EUROCRYPT' 95, Lecture Notes in Comput. Sci., 921 (1995) pp. 194-208.
A. Beutelspacher, How to say no, Advances in Cryptology: Proceedings of EUROCRYPT' 89, Lecture Notes in Comput. Sci., 434 (1990) pp. 491-496.
G. R. Blakley and G. A. Kabatianski, On general perfect secret sharing schemes, Adv. in Cryptology: CRYPTO'95, Lecture Notes in Comput. Sci., 963 (1995) pp. 367-371.
G. R. Blakley and C. Meadows, Security of ramp schemes, Adv. in Cryptology: CRYPTO' 84, Lecture Notes in Comput. Sci., 196 (1985) pp. 242-268.
C. Blundo, Secret sharing schemes for access structures based on graphs, Tesi di Laurea, 1991. (in Italian).
C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, Perfectly-secure key distribution for dynamic conferences, Adv. in Cryptology: CRYPTO'92, Lecture Notes in Comput. Sci., 740 (1993) pp. 471-481.
C. Blundo, A. De Santis, D.R. Stinson, and U. Vaccaro, Graph decompositions and secret sharing schemes, J. Cryptology, Vol. 8 (1995) pp. 39-64.
E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, J. Cryptology, Vol. 4 (1991) pp. 123-134.
E. F. Brickell and D. R. Stinson, Some improved bounds on the information rate of perfect secret sharing schemes, J. Cryptology, Vol. 5 (1992) pp. 153-166.
R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, A note on secret sharing schemes, Sequences II: Methods in Communications, Security and Computer Science, Springer Verlag (1993) pp. 335-344.
R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, On the size of shares for secret sharing schemes, J. Cryptology, Vol. 6 (1993) pp. 157-167.
T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley and Sons, Inc. (1991).
M. van Dijk, On the information rate of perfect secret sharing schemes, Designs, Codes, and Cryptography, Vol. 6 (1995) pp. 143-169.
M. van Dijk, A linear construction of secret sharing schemes, Designs, Codes and Cryptography., Vol. 12 (1997) pp. 161-201.
R. G. Gallager. Information Theory and Reliable Communications, John Wiley, New York (1968).
W.-A. Jackson and K. M. Martin, Combinatorial models for perfect secret sharing schemes, to appear in Journal of Combin. Math. and Combin. Comput.
W.-A. Jackson and K. M. Martin, Perfect secret sharing schemes on five participants, Designs, Codes and Cryptography, Vol. 9 (1996) pp. 267-286.
W.-A. Jackson, K. M. Martin, and C. M. O'Keefe, Efficient secret sharing without a mutually trusted authority, Adv. in Cryptology: EUROCRYPT' 95, Lecture Notes in Comput. Sci., 921 (1995) pp. 183-193.
W.-A. Jackson and K. M. Martin, An algorithm for efficient geometric secret sharing schemes, to appear in Utilitas Mathematica.
K. Kurosawa, K. Okada, K. Sakano, W. Ogata, and S. Tsujii, Nonperfect secret sharing schemes and matroids, Adv. in Cryptology: EUROCRYPT' 93, Lecture Notes in Comput. Sci., 765 (1994) pp. 126-141.
K. M. Martin, Discrete structures in the theory of secret sharing, PhD thesis, Royal Holloway and Bedford New College, University of London (1991).
K. M. Martin, New secret sharing schemes from old, Journal of Combin. Math. and Combin. Comput., Vol. 14 (1993) pp. 65-77.
W. Ogata, K. Kurosawa, and S. Tsujii, Nonperfect secret sharing schemes, Adv. in Cryptology: AUSCRYPT' 92, Lecture Notes in Comput. Sci., 718 (1993) pp. 56-66.
K. Okada and K. Kurosawa, Lower bound on the size of shares of nonperfect secret sharing schemes, Proceedings of ASIACRYPT' 94, Lecture Notes in Comput. Sci., (1995) pp. 33-41.
A. Shamir, How to share a secret, Commun. of the ACM, Vol. 22 (1979) pp. 612-613.
G. J. Simmons, An introduction to shared secret and/or shared control schemes and their application, Contemporary Cryptology, The Science of Information Integrity, (G. J. Simmons, ed.), IEEE Press (1992).
D. R. Stinson, Bibliography on secret sharing schemes, available online. http://bibd.unl.edu/~stinson/ssbib.html.
D. R. Stinson, An explication of secret sharing schemes, Designs, Codes and Cryptography, Vol. 2 (1992) pp. 357-390.
D. R. Stinson. New general lower bounds on the information rate of secret sharing schemes, Advances in Cryptology: CRYPTO' 92, Lecture Notes in Comput. Sci., 740 (1993) pp. 168-182.
D. R. Stinson, Decomposition constructions for secret sharing schemes, IEEE Trans. Inform. Theory, Vol. IT-40 (1994) pp. 118-125.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dijk, M.v., Jackson, WA. & Martin, K.M. A General Decomposition Construction for Incomplete Secret Sharing Schemes. Designs, Codes and Cryptography 15, 301–321 (1998). https://doi.org/10.1023/A:1008381427667
Issue Date:
DOI: https://doi.org/10.1023/A:1008381427667