On Lower Bounds For Covering Codes | Designs, Codes and Cryptography Skip to main content
Log in

On Lower Bounds For Covering Codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study lower bounds on K(n,R), the minimum number of codewords of any binary code of length n such that the Hamming spheres of radius R with center at codewords cover the Hamming space \(\mathbb{F}_(\text(2))n \). We generalize Honkala's idea toobtain further improvements only by using some simple observationsof Zhang's result. This leads to nineteen improvements of thelower bound on K(n,R) within the range of \(1 \leqslant n \leqslant {\text{33, 1}} \leqslant R \leqslant {\text{10}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cohen, I. S. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, Elsevier (1997).

  2. L. Dongfeng and W. Chen, New lower bounds for binary covering codes, IEEE Trans. Inform. Theory, Vol. 40 (1994) pp. 1122-1129.

    Google Scholar 

  3. H. O. Hämäläinen, I. S. Honkala, M. K. Kaikkonen, and S. N. Litsyn, Bounds for binary multiple covering codes, Designs, Codes and Cryptography, Vol. 3 (1993) pp. 251-275.

    Google Scholar 

  4. I. S. Honkala, Lower bounds for binary covering codes, IEEE Trans. Inform. Theory, Vol. 34 (1988) pp. 326-329.

    Google Scholar 

  5. I. S. Honkala, Modified bounds for covering codes, IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 361-65.

    Google Scholar 

  6. X. Hou, New lower bounds for covering codes, IEEE Trans. Inform. Theory, Vol. 36 (1990) pp. 895-99.

    Google Scholar 

  7. X. Hou, An improved sphere bounds for covering codes with n = 3R + 2, IEEE Trans. Inform. Theory, Vol. 36 (1990) pp. 1476-1478.

    Google Scholar 

  8. S. M. Johnson, A new lower for coverings by rook domains, Utilitas Mathematica, Vol. 1 (1972) pp. 121-40.

    Google Scholar 

  9. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 2nd. edition, North-Holland, Amsterdam (1976).

    Google Scholar 

  10. P. R. J. Östergård, A new binary code of length 10 and covering radius 1, IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 179-180.

    Google Scholar 

  11. P. R. J. Östergård and H. O. Hämäläinen, New upper bounds for binary=ternary mixed covering codes, Designs, Codes and Cryptography, Vol. 11 (1997) pp. 151-178.

    Google Scholar 

  12. G. J. M. van Wee, Improved sphere bounds on the covering radius of codes, IEEE Trans. Inform. Theory, Vol. 34 (1988) pp. 237-245.

    Google Scholar 

  13. Z. Zhang, Linear inequality for covering codes: Part I-pair covering inequalities, IEEE Trans. Inform. Theory, Vol. 37 (1991) pp. 573-582.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandari, M.C., Chanduka, K.K.P. & Lal, A.K. On Lower Bounds For Covering Codes. Designs, Codes and Cryptography 15, 237–243 (1998). https://doi.org/10.1023/A:1008364924033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008364924033

Navigation