A Duality Theory for a Class of Generalized Fractional Programs | Journal of Global Optimization Skip to main content
Log in

A Duality Theory for a Class of Generalized Fractional Programs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In generalized fractional programming, one seeks to minimize the maximum of a finite number of ratios. Such programs are, in general, nonconvex and consequently are difficult to solve. Here, we consider a particular case in which the ratio is the quotient of a quadratic form and a positive concave function. The dual of such a problem is constructed and a numerical example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avriel, M., Diewert, W., Schaible, S. and Zang, I. (1988), Generalized Concavity. Plenum Press.

  • Barros, A. I. (1995), Discrete and fractional programming techniques for location models, Tinbergen Institute Research Series 89.

  • Barros, A. I., Frenk, J. B. G., Schaible, S. and Zhang, S. (1996a), Using duality to solve generalized fractional programming problems, Journal of Global Optimization, 8, 139–170.

    Google Scholar 

  • Barros, A. I., Frenk, J. B. G., Schaible, S. Zhang, S., (1996b), Anew algorithm for generalized fractional programs, Mathematical Programming 72, 147–175.

    Google Scholar 

  • Bector, C. R. (1968), Programming problems with convex fractional functions, Operations Research 16, 383–391.

    Google Scholar 

  • Bector, C. R., and Suneja, S. K. (1988), Duality in nondifferentiable generalized fractional programming, {tiAsia Pacific Journal of Operational Research} 5(2), 134–139.

    Google Scholar 

  • Boncompte, M., and Martinez-Legaz, J. E. (1991), Fractional programming by lower subdifferentiability techniques, Journal of Optimization Theory and Applications 68(1), 95–116.

    Google Scholar 

  • Chandra, S., Craven, B. D., and Mond, B. (1986), Generalized fractional programming duality: A ratio game approach, Australian Mathematical Society, Journal Series B, Applied Mathematics 28(2), 170–180.

    Google Scholar 

  • Crouzeix, J. P., Ferland, J. A., and Schaible, S. (1983), Duality in generalized linear fractional programming, {tiMathematical Programming} 27(3), 342–354.

    Google Scholar 

  • Hiriart-Urruty, J. B., and Lemarechal, C. (1993), Convex Analysis and Minimization Algorithms. Springer Verlag.

  • Jagannathan, R., and Schaible, S. (1983), Duality in generalized fractional programming via Farkas' Lemma, Journal of Optimization Theory and Applications 41(3), 417–424.

    Google Scholar 

  • Jefferson, T. R. and C. H. Scott (1978), Avenues of geometric programming I. Theory, New Zealand Operational Research, 6, 109–136.

    Google Scholar 

  • Martein, L., and Sodini, C. (1982), Un Algoritmo per un problema di programmazione frazionaria non lineare e non convessa, Publication No. 93, Serie A, Dipartimento di Ricerca Operativa e Scienze Statistiche, Università di Pisa, Italy.

    Google Scholar 

  • Peterson, E. L. (1976), Geometric Programming, SIAM Review 18, 1–52.

    Google Scholar 

  • Rockafellar, R. T. (1970), Convex Analysis. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Schaible, S. (1995), Fractional programming, in R. Horst and P. M. Pardalos (eds.), Handbook of Global Optimization, Kluwer, 495–608.

  • Scott, C. H., and Jefferson, T. R. (1989), Conjugate duality in generalized fractional programming, {tiJournal of Optimization Theory and Applications} 60(3), 475–483.

  • Scott, C. H. and Jefferson, T. R. (1996), A convex dual for quadratic-concave fractional programs, {tiJournal of Optimization, Theory and Applications}, to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, C.H., Jefferson, T.R. & Frenk, J.B.G. A Duality Theory for a Class of Generalized Fractional Programs. Journal of Global Optimization 12, 239–245 (1998). https://doi.org/10.1023/A:1008274708071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008274708071

Navigation