Abstract
The relative binding free energies in HIV protease of haloperidol thioketal (THK) and three of its derivatives were examined with free energy calculations. THK is a weak inhibitor (IC50 = 15 μM) for which two cocrystal structures with HIV type 1 proteases have been solved [Rutenber, E. et al., J. Biol. Chem., 268 (1993) 15343]. A THK derivative with a phenyl group on C2 of the piperidine ring was expected to be a poor inhibitor based on experiments with haloperidol ketal and its 2- phenyl derivative (Caldera, P., personal communication). Our calculations predict that a 5-phenyl THK derivative, suggested based on examination of the crystal structure, will bind significantly better than THK. Although there are large error bars as estimated from hysteresis, the calculations predict that the 5-phenyl substituent is clearly favored over the 2-phenyl derivative as well as the parent compound. The unfavorable free energies of solvation of both phenyl THK derivatives relative to the parent compound contributed to their predicted binding free energies. In a third simulation, the change in binding free energy for 5-benzyl THK relative to THK was calculated. Although this derivative has a lower free energy in the protein, its decreased free energy of solvation increases the predicted ΔΔG(bind) to the same range as that of the 2-phenyl derivative.
Similar content being viewed by others
References
McQuade, T.J., Thomasselli, A.G, Liu, L., Karacostas, V., Moss, B., Sawyer, T.K., Heinrikson, R.L. and Tarpley, W.G., Science, 247 (1990) 454.
Navia, M.A., Fitzgerald, P.M.D., Mc Keever, B.M., Leu, C.-T., Heimbach, J.C., Herber, W.K., Sigal, I.S., Darke, P.L. and Springer, J.P., Nature, 337 (1989) 615.
Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J. and Kent, S.B.H., Science, 245 (1989) 616.
Swain, A.L., Miller, M.M., Green, J., Rich, D.H., Schneider, J., Kent, S.B.H. and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 87 (1990) 8805.
Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B.H. and Wlodawer, A., Science, 246 (1989) 1149.
Jaskolski, M., Tomasselli, A.G., Sawyer, T.K., Staples, D.G., Heinrikson, R.L., Schneider, J., Kent, S.B.H. and Wlodawer, A., Biochemistry, 30 (1991) 1600.
For a review, see McCarrick, M.A. and Kollman, P.A., Methods Enzymol., 241 (1994) 370.
Ferguson, D.M., Radmer, R.J. and Kollman, P.A., J. Med. Chem., 34 (1991) 2654.
Tropsha, A. and Hermans, J., Protein Eng., 5 (1992) 29.
Rich, D.H., Sun, C.Q., Vara Prasad, J.V.N., Pathiasseril, A., Toth, M.V., Marshall, G.R., Clare, M., Mueller, R.A. and Houseman, K., J. Med. Chem., 34 (1991) 1222.
Reddy, M.R., Viswanadhan, V.N. and Weinstein, J.N., Proc. Natl. Acad. Sci. USA, 88 (1991) 10287.
Rao, B.G., Tilton, R.F. and Singh, U.C., J. Am. Chem. Soc., 114 (1992) 4447.
Chen, X and Tropsha, A., J. Med. Chem., 38 (1995) 42.
Desjarlais, R.L., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., Ortiz de Montellano, P.R., DeCamp, D.L., Babe, L.M. and Craik, C.S., Proc. Natl. Acad. Sci. USA, 87 (1990) 6644.
Rutenber, E., Fauman, E.B., Keenan, R.J., Fong, S., Furth, P.S., Ortiz de Montellano, P.R., Meng, E., Kuntz, I.D., De-Camp, D.L., Salto, R., Rose, J.R., Craik, C.S. and Stroud, R.M., J. Biol. Chem., 268 (1993) 15343.
Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 13.
Pearlman, D.A., Caldwell, J.W., Case, D.A., Ross, W.S., Cheatham III, T.E., DeBolt, S., Ferguson, D., Seibel, G. and Kollman, P.A., Comput. Phys. Lett., 91 (1995) 1.
Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.
Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.
Allinger, N.L., Yuh, Y.H. and Li, J.H., J. Am. Chem. Soc., 111 (1989) 8551.
Gough, C., DeBolt, S. and Kollman, P.A., J. Comput. Chem., 13 (1992) 963.
Bayly, C., Cieplak, P., Cornell, W.D. and Kollman, P.A., J. Phys. Chem., 97 (1993) 10269.
Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. and Klein, M., J. Chem. Phys., 79 (1983) 926.
Several such reviews are
Straatsma, T.P. and McCammon, J.A., Annu Rev. Phys. Chem., 43, (1992) 407.
Richards, W.G., Proc. R. Soc. Edinburgh Sec. B, Biol. Sci., 99 (1992) 105.
Kollman, P.A., Chem. Rev., 93 (1993) 2395.
Beveridge, D.L. and DiCapua, F.M., Annu. Rev. Biophys. Biophys. Chem., 18 (1989) 431.
Singh, S., Pearlman, D.A. and Kollman, P.A., J. Biomol. Struct. Dyn., 11 (1993) 303.
Cheatham III, T.E., Miller, J.L., Fox, T., Darden, T.A. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 4193.
Sun, Y., Veenstra, D.L. and Kollman, P.A., Protein Eng., 9 (1995) 273.
Allen, K.N., Bellamacina, C.R., Ding, X.C., Jeffrey, C.J., Mattos, C., Petsko, G.A. and Ringe, D., J. Phys. Chem., 100 (1996) 2605.
Driscoll, M., Seddiqui, H., Ford, J., Kelley, J., Roth, H., Mitsuya, M., Tanaka and Marquez, V., J. Med. Chem., 39 (1996) 1619.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
McCarrick, M.A., Kollman, P.A. Predicting relative binding affinities of non-peptide HIV protease inhibitors with free energy perturbation calculations. J Comput Aided Mol Des 13, 109–121 (1999). https://doi.org/10.1023/A:1008044721715
Issue Date:
DOI: https://doi.org/10.1023/A:1008044721715