Predicting relative binding affinities of non-peptide HIV protease inhibitors with free energy perturbation calculations | Journal of Computer-Aided Molecular Design Skip to main content
Log in

Predicting relative binding affinities of non-peptide HIV protease inhibitors with free energy perturbation calculations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The relative binding free energies in HIV protease of haloperidol thioketal (THK) and three of its derivatives were examined with free energy calculations. THK is a weak inhibitor (IC50 = 15 μM) for which two cocrystal structures with HIV type 1 proteases have been solved [Rutenber, E. et al., J. Biol. Chem., 268 (1993) 15343]. A THK derivative with a phenyl group on C2 of the piperidine ring was expected to be a poor inhibitor based on experiments with haloperidol ketal and its 2- phenyl derivative (Caldera, P., personal communication). Our calculations predict that a 5-phenyl THK derivative, suggested based on examination of the crystal structure, will bind significantly better than THK. Although there are large error bars as estimated from hysteresis, the calculations predict that the 5-phenyl substituent is clearly favored over the 2-phenyl derivative as well as the parent compound. The unfavorable free energies of solvation of both phenyl THK derivatives relative to the parent compound contributed to their predicted binding free energies. In a third simulation, the change in binding free energy for 5-benzyl THK relative to THK was calculated. Although this derivative has a lower free energy in the protein, its decreased free energy of solvation increases the predicted ΔΔG(bind) to the same range as that of the 2-phenyl derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McQuade, T.J., Thomasselli, A.G, Liu, L., Karacostas, V., Moss, B., Sawyer, T.K., Heinrikson, R.L. and Tarpley, W.G., Science, 247 (1990) 454.

    Google Scholar 

  2. Navia, M.A., Fitzgerald, P.M.D., Mc Keever, B.M., Leu, C.-T., Heimbach, J.C., Herber, W.K., Sigal, I.S., Darke, P.L. and Springer, J.P., Nature, 337 (1989) 615.

    Google Scholar 

  3. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J. and Kent, S.B.H., Science, 245 (1989) 616.

    Google Scholar 

  4. Swain, A.L., Miller, M.M., Green, J., Rich, D.H., Schneider, J., Kent, S.B.H. and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 87 (1990) 8805.

    Google Scholar 

  5. Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B.H. and Wlodawer, A., Science, 246 (1989) 1149.

    Google Scholar 

  6. Jaskolski, M., Tomasselli, A.G., Sawyer, T.K., Staples, D.G., Heinrikson, R.L., Schneider, J., Kent, S.B.H. and Wlodawer, A., Biochemistry, 30 (1991) 1600.

    Google Scholar 

  7. For a review, see McCarrick, M.A. and Kollman, P.A., Methods Enzymol., 241 (1994) 370.

    Google Scholar 

  8. Ferguson, D.M., Radmer, R.J. and Kollman, P.A., J. Med. Chem., 34 (1991) 2654.

    Google Scholar 

  9. Tropsha, A. and Hermans, J., Protein Eng., 5 (1992) 29.

    Google Scholar 

  10. Rich, D.H., Sun, C.Q., Vara Prasad, J.V.N., Pathiasseril, A., Toth, M.V., Marshall, G.R., Clare, M., Mueller, R.A. and Houseman, K., J. Med. Chem., 34 (1991) 1222.

    Google Scholar 

  11. Reddy, M.R., Viswanadhan, V.N. and Weinstein, J.N., Proc. Natl. Acad. Sci. USA, 88 (1991) 10287.

    Google Scholar 

  12. Rao, B.G., Tilton, R.F. and Singh, U.C., J. Am. Chem. Soc., 114 (1992) 4447.

    Google Scholar 

  13. Chen, X and Tropsha, A., J. Med. Chem., 38 (1995) 42.

    Google Scholar 

  14. Desjarlais, R.L., Seibel, G.L., Kuntz, I.D., Furth, P.S., Alvarez, J.C., Ortiz de Montellano, P.R., DeCamp, D.L., Babe, L.M. and Craik, C.S., Proc. Natl. Acad. Sci. USA, 87 (1990) 6644.

    Google Scholar 

  15. Rutenber, E., Fauman, E.B., Keenan, R.J., Fong, S., Furth, P.S., Ortiz de Montellano, P.R., Meng, E., Kuntz, I.D., De-Camp, D.L., Salto, R., Rose, J.R., Craik, C.S. and Stroud, R.M., J. Biol. Chem., 268 (1993) 15343.

    Google Scholar 

  16. Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graphics, 6 (1988) 13.

    Google Scholar 

  17. Pearlman, D.A., Caldwell, J.W., Case, D.A., Ross, W.S., Cheatham III, T.E., DeBolt, S., Ferguson, D., Seibel, G. and Kollman, P.A., Comput. Phys. Lett., 91 (1995) 1.

    Google Scholar 

  18. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  19. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  20. Allinger, N.L., Yuh, Y.H. and Li, J.H., J. Am. Chem. Soc., 111 (1989) 8551.

    Google Scholar 

  21. Gough, C., DeBolt, S. and Kollman, P.A., J. Comput. Chem., 13 (1992) 963.

    Google Scholar 

  22. Bayly, C., Cieplak, P., Cornell, W.D. and Kollman, P.A., J. Phys. Chem., 97 (1993) 10269.

    Google Scholar 

  23. Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. and Klein, M., J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  24. Several such reviews are

  25. Straatsma, T.P. and McCammon, J.A., Annu Rev. Phys. Chem., 43, (1992) 407.

    Google Scholar 

  26. Richards, W.G., Proc. R. Soc. Edinburgh Sec. B, Biol. Sci., 99 (1992) 105.

    Google Scholar 

  27. Kollman, P.A., Chem. Rev., 93 (1993) 2395.

    Google Scholar 

  28. Beveridge, D.L. and DiCapua, F.M., Annu. Rev. Biophys. Biophys. Chem., 18 (1989) 431.

    Google Scholar 

  29. Singh, S., Pearlman, D.A. and Kollman, P.A., J. Biomol. Struct. Dyn., 11 (1993) 303.

    Google Scholar 

  30. Cheatham III, T.E., Miller, J.L., Fox, T., Darden, T.A. and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 4193.

    Google Scholar 

  31. Sun, Y., Veenstra, D.L. and Kollman, P.A., Protein Eng., 9 (1995) 273.

    Google Scholar 

  32. Allen, K.N., Bellamacina, C.R., Ding, X.C., Jeffrey, C.J., Mattos, C., Petsko, G.A. and Ringe, D., J. Phys. Chem., 100 (1996) 2605.

    Google Scholar 

  33. Driscoll, M., Seddiqui, H., Ford, J., Kelley, J., Roth, H., Mitsuya, M., Tanaka and Marquez, V., J. Med. Chem., 39 (1996) 1619.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarrick, M.A., Kollman, P.A. Predicting relative binding affinities of non-peptide HIV protease inhibitors with free energy perturbation calculations. J Comput Aided Mol Des 13, 109–121 (1999). https://doi.org/10.1023/A:1008044721715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008044721715

Navigation