Published online by Cambridge University Press: 12 November 2014
Opacity is a general language-theoretic framework in which several security properties of a system can be expressed. Its parameters are a predicate, given as a subset of runs of the system, and an observation function, from the set of runs into a set of observables. The predicate describes secret information in the system and, in the possibilistic setting, it is opaque if its membership cannot be inferred from observation.
In this paper, we propose several notions of quantitative opacity for probabilistic systems, where the predicate and the observation function are seen as random variables. Our aim is to measure (i) the probability of opacity leakage relative to these random variables and (ii) the level of uncertainty about membership of the predicate inferred from observation. We show how these measures extend possibilistic opacity, we give algorithms to compute them for regular secrets and observations, and we apply these computations on several classical examples. We finally partially investigate the non-deterministic setting.
Part of this work has been published in the proceedings of Qest'10 (Bérard et al. 2010).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.