Published online by Cambridge University Press: 30 January 2018
This paper deals with the first passage optimality and variance minimisation problems of discrete-time Markov decision processes (MDPs) with varying discount factors and unbounded rewards/costs. First, under suitable conditions slightly weaker than those in the previous literature on the standard (infinite horizon) discounted MDPs, we establish the existence and characterisation of the first passage expected-optimal stationary policies. Second, to further distinguish the expected-optimal stationary policies, we introduce the variance minimisation problem, prove that it is equivalent to a new first passage optimality problem of MDPs, and, thus, show the existence of a variance-optimal policy that minimises the variance over the set of all first passage expected-optimal stationary policies. Finally, we use a computable example to illustrate our main results and also to show the difference between the first passage optimality here and the standard discount optimality of MDPs in the previous literature.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.