Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-20T19:23:22.122Z Has data issue: false hasContentIssue false

Gradient and Harnack-type estimates for PageRank

Published online by Cambridge University Press:  03 September 2020

Paul Horn
Affiliation:
University of Denver, Denver, CO80208, USA (e-mail: paul.horn@du.edu)
Lauren M. Nelsen*
Affiliation:
University of Indianapolis, Indianapolis, IN46227, USA
*
*Corresponding author. Email: nelsenl@uindy.edu

Abstract

Personalized PageRank has found many uses in not only the ranking of webpages, but also algorithmic design, due to its ability to capture certain geometric properties of networks. In this paper, we study the diffusion of PageRank: how varying the jumping (or teleportation) constant affects PageRank values. To this end, we prove a gradient estimate for PageRank, akin to the Li–Yau inequality for positive solutions to the heat equation (for manifolds, with later versions adapted to graphs).

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Special Issue Editor: Hocine Cherifi

References

Alon, N. (1986). Eigenvalues and expanders. Combinatorica, 6(2), 8396. Theory of computing (Singer Island, Fla., 1984).CrossRefGoogle Scholar
Andersen, R., Chung, F., & Lang, K. (2008). Local partitioning for directed graphs using PageRank. Internet Mathematics, 5(1–2), 322.CrossRefGoogle Scholar
Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., & Yau, S.-T. (2015). Li-Yau inequality on graphs. Journal of Differential Geometry, 99(3), 359405.CrossRefGoogle Scholar
Brin, S. & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1), 107117. Proceedings of the Seventh International World Wide Web Conference.CrossRefGoogle Scholar
Cheeger, J. (1970). A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner, 1969) (pp. 195199). Princeton, NJ: Princeton University Press.Google Scholar
Chung, F. (2007). The heat kernel as the PageRank of a graph. Proceedings of the National Academy of Sciences, 104(50), 1973519740.CrossRefGoogle Scholar
Chung, F. (2011). PageRank as a discrete Green’s function. In Geometry and analysis. No. 1, vol. 17, Advanced Lectures in Mathematics (ALM) (pp. 285302). Somerville, MA: International PressGoogle Scholar
Chung, F., Horn, P., & Hughes, J. (2014). Multicommodity allocation for dynamic demands using PageRank vectors. Internet Mathematics, 10(1–2), 4965.CrossRefGoogle Scholar
Chung, F., Horn, P., & Tsiatas, A. (2009). Distributing antidote using PageRank vectors. Internet Mathematics, 6(2), 237254 (2010).CrossRefGoogle Scholar
Chung, F., Lin, Y., & Yau, S.-T. (2014). Harnack inequalities for graphs with non-negative Ricci curvature. Journal of Mathematical Analysis and Applications, 415(1), 2532.CrossRefGoogle Scholar
Chung, F. R. K. (1997). Spectral graph theory, vol. 92, CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI.Google Scholar
Delmotte, T. (1999). Parabolic Harnack inequality and estimates of Markov chains on graphs. Revista Matemática Iberoamericana, 15(1), 181232.CrossRefGoogle Scholar
Dodziuk, J. (1984). Difference equations, isoperimetric inequality and transience of certain random walks. Transactions of the American Mathematical Society, 284(2), 787794.CrossRefGoogle Scholar
Hamilton, R. S. (1993). A matrix Harnack estimate for the heat equation. Communications in Analysis and Geometry, 1(1), 113126.CrossRefGoogle Scholar
Horn, P. (2019) A spacial gradient estimate for solutions to the heat equation on graphs. SIAM Journal on Discrete Mathematics, 33(2), 958975.CrossRefGoogle Scholar
Horn, P., Lin, Y., Liu, S., & Yau, S.-T. (2019). Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. Journal fur die Reine und Angewandte Mathematik, 757, 89130.CrossRefGoogle Scholar
Horn, P., & Nelsen, L. M. (2019). A gradient estimate for PageRank. In Cherifi, H., Gaito, S., Mendes, J., Moro, E., & Rocha, L. (Eds.) Complex networks and their applications VIII, vol. 881, Studies in Computational Intelligence (pp. 1526). Cham: Springer.Google Scholar
Jeh, G., & Widom, J. (2003). Scaling personalized web search. In Proceedings of the 12th World Wide Web Conference (WWW) (pp. 271279).CrossRefGoogle Scholar
Li, P. & Yau, S.-T. (1986). On the parabolic kernel of the Schrödinger operator. Acta Mathematica, 156(3–4), 153201.CrossRefGoogle Scholar
Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The PageRank citation ranking: Bringing order to the web. In Proceedings of the 7th international World wide web conference, Brisbane, Australia (pp. 161172).Google Scholar