Geometric robustness theory and biological networks | Theory in Biosciences Skip to main content
Log in

Geometric robustness theory and biological networks

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

We provide a geometric framework for investigating the robustness of information flows over biological networks. We use information measures to quantify the impact of knockout perturbations on simple networks. Robustness has two components, a measure of the causal contribution of a node or nodes, and a measure of the change or exclusion dependence, of the network following node removal. Causality is measured as statistical contribution of a node to network function, wheras exclusion dependence measures a distance between unperturbed network and reconfigured network function. We explore the role that redundancy plays in increasing robustness, and how redundacy can be exploited through error-correcting codes implemented by networks. We provide examples of the robustness measure when applied to familiar boolean functions such as the AND, OR and XOR functions. We discuss the relationship between robustness measures and related measures of complexity and how robustness always implies a minimal level of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, R., Jeong, H., Barabasi, A.L., 2000. Error and attack tolerance of complex networks. Nature 406, 378–382.

    Article  PubMed  CAS  Google Scholar 

  • Amari, S., 1985. Differential-Geometric Methods in Statistics, Lecture Notes in Statistics, vol. 28. Springer, Heidelberg.

    Google Scholar 

  • Amari, S., Nagaoka, H., 2000. Methods of Information Geometry, AMS Translations of Mathematical Monographs, vol. 191. Oxford University Press, Oxford.

    Google Scholar 

  • Barkai, N., Leibler, S., 1997. Robustness in simple biochemical networks. Nature 376, 307–312.

    Google Scholar 

  • Bialek, W., Nemenman, I., Tishby, N., 2001. Predictability, Complexity, and Learning. Neural Comput. 13, 2409–2463.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, D.S., Newman, J.E.J., Strogatz, S.H., Watts, D.J., 2000. Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471.

    Article  PubMed  CAS  Google Scholar 

  • Chosmky, N., 1981. Principles and parameters in syntactic theory. In: Hornstein, N., Lightfoot, D. (Eds.), Explations in Linguistics. Longman, London.

    Google Scholar 

  • Cover, T.M., Thomas J.A., 2001. Elements of Information Theory. Wiley, New York.

    Google Scholar 

  • Crutchfield, J.P., Packard, N.H., 1983. Symbolic, dynamics of noisy chaos. Physica D 7, 201–223.

    Article  Google Scholar 

  • de Visser, J.A.G.M., Hermisson, J., Wagner, G.P., Meyers, L.A., Bagheri-Chaichian, H., Blanchard, J.L., Chao, L., Cheverud, J.M., Elena, S.F., Fontana, W. Gibson, G., Hansen, T.F., Krakauer, D., Lewontin, R.C., Ofria, C., Rice, S.H., von Dassow, G., Wagner, A., Whitlock, M.C., 2003. Evolution and detection of genetic robustness. Evolution 57, 1959–1972.

    Article  PubMed  Google Scholar 

  • Dunne, J.A., Williams, R.J., Martinez, N.D., 2002. Networks structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558.

    Article  Google Scholar 

  • Erb, I., Ay, N., 2003. Multi-information in the thermodynamic limit. J. Stat. Phys. 115, 949–976.

    Article  Google Scholar 

  • Flack, J., Girvan, M., de Waal, F., Krakauer, D.C., 2006. Policing stabilizes construction of social niches in primates. Nature, 439, 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg, E.C., 1985. DNA Repair. W.H. Freeman, New York.

    Google Scholar 

  • Grassberger, P., 1986. Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25 (9), 907–938.

    Article  Google Scholar 

  • Krakauer, D.C., 2003. Genetic Redundancy, Evolution and Comparative Genomics. Encyclopedia of the human genome. Nature Publishing Group. MacMillan Publishers, New York.

    Google Scholar 

  • Krakauer, D.C., 2004. Robustness in biological systems: a provisional taxonomy. In: T.S. Dreisboeck, J. Yasha Kresh. (Eds.), Complex Systems Science in Biomedicine, Kluwer Academic Press, Dordrecht.

    Google Scholar 

  • Krakauer, D.C., Nowak, M.A., 1999. Evolutionary preservation of redundant duplicated genes. Semin. Cell. Dev. Biol. 10, 555–559.

    Article  PubMed  CAS  Google Scholar 

  • Krakauer, D.C., Plotkin, J.B., 2002. Redundancy, antiredundancy, and the robustness of genomes. Proc. Natl. Acad. Sci. USA 99, 1405–1409.

    Article  PubMed  CAS  Google Scholar 

  • Krakauer, D.C., Plotkin, J.B., 2004. Principles and parameters of molecular robustness. In: Jen, E. (Ed.), Robust Design: A Repertoire for Biology, Ecology and Engineering. Oxford University Press, Oxford, pp. 115–133.

    Google Scholar 

  • Newman, M., 2003. The structure and function of complex networks. SIAM Rev. 45, 167–256.

    Article  Google Scholar 

  • Pearl, J., 2000. In: Causality. Cambridge University Press, Cambridge.

    Google Scholar 

  • Peterson, W.W., Weldon, E.J., 1972. Error Correcting Codes. MIT Press, Cambridge, MA.

    Google Scholar 

  • Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L., 1994. From sequences to shapes and back: a case study in RNA secondary structures. Proc. Roy. Soc. (London) B, 255, 279–284 (1994).

    Article  CAS  Google Scholar 

  • Shmulevich, I., Lahdesmaki, H., Dougherty, E.R., Zhang, W., 2003. The role of certain postclasses in Boolean network models of genetic networks. Proc. Natl. Acad. Sci. USA 100, 10734–10739.

    Article  PubMed  CAS  Google Scholar 

  • Strogatz, S.H., 2001. Exploring complex networks. Nature 410, 268–276.

    Article  PubMed  CAS  Google Scholar 

  • Tononi, G., Sporns, O., Edelman, G.M., 1994. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037.

    Article  PubMed  CAS  Google Scholar 

  • Tyson, J.J., Chen, K., Novak, B., 2001. Network dynamics and cell physiology. Nat. Rev. Mol. Bio. 2, 908–916.

    Article  CAS  Google Scholar 

  • van Baalen, M., Krivan, V., van Rijn, P.C.J., Sabelis, M.W., 2001. Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157.

  • Wagner, A., 1994. Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. Proc. Natl. Acad. Sci. USA 91, 4387–4391.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A., 2000. Robustness against mutations in genetic networks of yeast. Nat. Genet. 24, 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A., 2005. Robustness and Evolvability in Living Systems. Princeton University Press, Princeton, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihat Ay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ay, N., Krakauer, D.C. Geometric robustness theory and biological networks. Theory Biosci. 125, 93–121 (2007). https://doi.org/10.1016/j.thbio.2006.06.002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.thbio.2006.06.002

Keywords

Navigation