%PDF-1.5
%
1 0 obj
<< /S /GoTo /D (section.1) >>
endobj
4 0 obj
(Introduction)
endobj
5 0 obj
<< /S /GoTo /D (subsection.1.1) >>
endobj
8 0 obj
(Linear sets and their weight distribution)
endobj
9 0 obj
<< /S /GoTo /D (subsection.1.2) >>
endobj
12 0 obj
(Explicit constructions)
endobj
13 0 obj
<< /S /GoTo /D (subsection.1.3) >>
endobj
16 0 obj
(Connections with other research problems)
endobj
17 0 obj
<< /S /GoTo /D (subsubsection.1.3.1) >>
endobj
20 0 obj
(Desarguesian spreads and field reduction)
endobj
21 0 obj
<< /S /GoTo /D (subsubsection.1.3.2) >>
endobj
24 0 obj
(Linearised polynomials)
endobj
25 0 obj
<< /S /GoTo /D (subsubsection.1.3.3) >>
endobj
28 0 obj
(Rank distance codes)
endobj
29 0 obj
<< /S /GoTo /D (subsubsection.1.3.4) >>
endobj
32 0 obj
(KM-arcs)
endobj
33 0 obj
<< /S /GoTo /D (subsection.1.4) >>
endobj
36 0 obj
(The weight distribution of Fq-linear sets of rank 5 in PG\(1,q5\), q=2,3,4.)
endobj
37 0 obj
<< /S /GoTo /D (subsection.1.5) >>
endobj
40 0 obj
(Linear sets of rank at most 4 in PG\(1,q5\))
endobj
41 0 obj
<< /S /GoTo /D (subsection.1.6) >>
endobj
44 0 obj
(Strategy for the proof of the Main Theorem)
endobj
45 0 obj
<< /S /GoTo /D (subsubsection.1.6.1) >>
endobj
48 0 obj
(Linear sets as projections of subgeometries and the set Omega2)
endobj
49 0 obj
<< /S /GoTo /D (subsubsection.1.6.2) >>
endobj
52 0 obj
(Overview of this paper)
endobj
53 0 obj
<< /S /GoTo /D (section.2) >>
endobj
56 0 obj
(The intersection of a subspace with the set Omega2)
endobj
57 0 obj
<< /S /GoTo /D (subsection.2.1) >>
endobj
60 0 obj
(The intersection of a line with Omega2)
endobj
61 0 obj
<< /S /GoTo /D (subsection.2.2) >>
endobj
64 0 obj
(The type of a point of rank 2)
endobj
65 0 obj
<< /S /GoTo /D (subsubsection.2.2.1) >>
endobj
68 0 obj
(The notation P=Q1+gQ2)
endobj
69 0 obj
<< /S /GoTo /D (subsection.2.3) >>
endobj
72 0 obj
(The intersection of a plane with Omega2)
endobj
73 0 obj
<< /S /GoTo /D (section.3) >>
endobj
76 0 obj
(Linear sets containing a point of weight at least 3)
endobj
77 0 obj
<< /S /GoTo /D (subsection.3.1) >>
endobj
80 0 obj
(Linear sets containing a point of weight 4)
endobj
81 0 obj
<< /S /GoTo /D (subsection.3.2) >>
endobj
84 0 obj
(Linear sets containing a point of weight 3)
endobj
85 0 obj
<< /S /GoTo /D (section.4) >>
endobj
88 0 obj
(Linear sets with only points of weight 1 and 2)
endobj
89 0 obj
<< /S /GoTo /D (subsection.4.1) >>
endobj
92 0 obj
(When there is a \(q+1\)-secant to Omega2)
endobj
93 0 obj
<< /S /GoTo /D (subsection.4.2) >>
endobj
96 0 obj
(When there are no \(q+1\)-secants to Omega2)
endobj
97 0 obj
<< /S /GoTo /D (appendix.A) >>
endobj
100 0 obj
(Appendix: The proof of Theorem 4.3)
endobj
101 0 obj
<< /S /GoTo /D (appendix.B) >>
endobj
104 0 obj
(Appendix: The proof of Theorem 4.5)
endobj
105 0 obj
<< /S /GoTo /D [106 0 R /Fit] >>
endobj
114 0 obj
<<
/Length 3028
/Filter /FlateDecode
>>
stream
xڽZ[w~#x*ns;O۸I-79 rE!& :fg $'ia;˷3ŋ"^xϞlab&Y^JE*f&z}+niWzv