Abstract
The process scheduling in the distributed and heterogeneous environment is the principal concern which can influence the execution performance of the application. The multiprocessor scheduling concept in grid environment incepts from 1980. After a decade in 1992 heuristic and evolutionary approaches started to solve these issues followed by nature inspired metaheuristic algorithms which started in the twentieth century. This paper provides a taxonomy of scheduling techniques which defines characteristics of each technique and gives some prominent algorithms as an example. Many research works have been done for minimizing execution cost and makespan as the influencing parameters for the scheduling of the dependent processes but few researchers have considered energy utilization, memory utilization and miss rate. This paper describes different types of algorithms starting from traditional algorithms from the year 1984 and consequently, metaheuristic algorithms including nature-inspired, bio-inspired, swarm intelligence-based techniques used for multiprocessor scheduling optimization purposes in different real-time applications up to 2019. It also defines available simulation tool for simulating scheduling algorithms. This paper will empower the beginners to select appropriate techniques according to their requirements and especially it will be a great help for getting a road map for different scheduling techniques and its applications.
Graphical Abstract
Similar content being viewed by others
References
Casavant TL, Kuhl JG. Taxonomy of scheduling in general-purpose distributed computing systems. IEEE Trans Softw Eng. 1988;14:141–54. https://doi.org/10.1109/32.4634.
Allen BT, Tucker BT. Computer Science Handbook. 2nd ed. London: Chapman & Hall/CRC Publishers; 2004.
Ranadive P, et al. Taxonomy of automotive real-time scheduling. No. 2016-01-0038. SAE Technical Paper, 2016. https://doi.org/10.4271/2016-01-0038.
Topcuoglu H, Wu MY. Performance-effective and low complexity task scheduling for heterogeneous computing. IEEE Trans Parallel Distrib Comput. 2002;13(3):260–74. https://doi.org/10.1109/71.993206.
Kour R. Multiprocessor scheduling using task duplication-based scheduling algorithms: a review paper. Int J Appl Innov Eng Manag. 2013;2(4):311–7.
Kruatrachue B, Lewis TG. Duplication scheduling heuristic, a new precedence task scheduling for parallel system. Technical Report 87-60-3. Corvallis: Oregon State University; 1987.
Hwang J-J, et al. Scheduling precedence graphs in systems with interprocessor communication times. SIAM J Comput. 1989;18(2):244–57. https://doi.org/10.1137/0218016.
El-Rewini H, Lewis TG, Ali HH. Task scheduling in parallel and distributed systems. Hoboken: Prentice-Hall Inc; 1994.
Radulescu A, Van Gemund AJC. FLB: fast load balancing for distributed-memory machines. In: Proceedings of the 1999 International Conference on Parallel Processing. New York: IEEE; 1999. https://doi.org/10.1109/ICPP.1999.797442.
Topcuoglu H, Hariri S, Min-you Wu. Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans Parallel Distrib Syst. 2002;13(3):260–74. https://doi.org/10.1109/71.993206.
Radulescu A, Van Gemund AJC. Fast and effective task scheduling in heterogeneous systems. In: Proceedings 9th heterogeneous computing workshop (HCW 2000) (Cat. No. PR00556). New York: IEEE; 2000. https://doi.org/10.1109/HCW.2000.843747.
Acharya B, Panda S. Modified SSA for solving multiprocessor scheduling problems. In: 2021 5th international conference on intelligent computing and control systems (ICICCS). New York: IEEE; p. 1075–80. 2021. https://doi.org/10.1109/ICICCS51141.2021.9432367.
Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–80. https://doi.org/10.1126/science.220.4598.671.
Devadas S, Newton AR. Algorithms for hardware allocation in data path synthesis. IEEE Trans Comput-Aided Des Integr Circuits Syst. 1989;8(7):768–81. https://doi.org/10.1109/43.31534.
Orsila H, Salminen E, Hämäläinen TD. Parameterizing simulated annealing for distributing kahn process networks on multiprocessor socs. In: 2009 international symposium on system-on-chip. New York: IEEE; 2009. https://doi.org/10.1109/SOCC.2009.5335683.
Maniezzo V, Carbonaro A. Ant colony optimization: an overview. In: Essays and surveys in metaheuristics. Operations research/computer science interfaces series, vol 15. Boston: Springer; 2002.
Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput. 1997;1(1):53–66. https://doi.org/10.1109/4235.585892.
Pierucci S, et al. An industrial application of an on-line data reconciliation and optimization problem. Comput Chem Eng. 1996;20:S1539–44. https://doi.org/10.1016/0098-1354(96)00262-1.
den Besten M, Stützle T, Dorigo M, et al. Ant colony optimization for the total weighted tardiness problem. In: Schoenauer M, et al., editors. Parallel problem solving from nature PPSN VI. PPSN 2000. Lecture notes in computer science, vol. 1917. Berlin: Springer; 2000.
Gajpal Y, Rajendran C, Ziegler H. An ant colony algorithm for scheduling in flowshops with sequence-dependent setup times of jobs. Int J Adv Manuf Technol. 2006;30(5–6):416–24. https://doi.org/10.1007/s00170-005-0093-y.
Rajendran C, Ziegler H. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur J Oper Res. 2004;155(2):426–38. https://doi.org/10.1016/S0377-2217(02)00908-6.
Glover F, Laguna M. Tabu search Handbook of combinatorial optimization. Springer; 1998. p. 2093–229.
Glover F, Taillard E. A user’s guide to tabu search. Ann Oper Res. 1993;41(1):1–28.
Acharya B, Panda, S. GA–JAYA: a novel hybridization technique to solving job scheduling problems. In: Proceedings of data analytics and management. Singapore: Springer. 2022. p. 221–30. https://doi.org/10.1007/978-981-16-6289-8_19.
Kwok Y-K, Ahmad I. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput Surv. 1999;31(4):406–71. https://doi.org/10.1145/344588.344618.
Grajcar M. Genetic list scheduling algorithm for scheduling and allocation on a loosely coupled heterogeneous multiprocessor system. In: Proceedings 1999 design automation conference (Cat. No. 99CH36361). New York: IEEE; 1999. https://doi.org/10.1109/DAC.1999.781326.
Holland JH. Adaptation in natural and artificial systems, vol. 1. Ann Arbor: The University of Michigan Press; 1975. p. 975.
Gordberg DE. Genetic algorithm in search, optimization and machine learning. Reading: Addison-Wesley; 1989.
Alba E, Dorronsoro B. Solving the vehicle routing problem by using cellular genetic algorithms. In: Gottlieb J, Raidl GR, editors. Evolutionary computation in combinatorial optimization. EvoCOP 2004. Lecture notes in computer science, vol. 3004. Berlin: Springer; 2004.
Dawkins R. The selfish gene. Oxford: Clarendon; 1976.
Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P Report 826 (1989). 1989.
Kohler WH, Steiglitz K. Characterization and theoretical comparison of branch-and-bound algorithms for permutation problems. J ACM. 1974;21(1):140–56. https://doi.org/10.1145/321796.321808.
Kasahara H, Narita S. Practical multiprocessor scheduling algorithms for efficient parallel processing. IEEE Trans Comput. 1984;11:1023–9. https://doi.org/10.1109/TC.1984.1676376.
Fujita S, Masukawa M, Tagashira S. A fast branch-and-bound algorithm with an improved lower bound for solving the multiprocessor scheduling problem. In: Ninth international conference on parallel and distributed systems, 2002. proceedings. New York: IEEE; 2002. https://doi.org/10.1109/ICPADS.2002.1183469.
Atamtürk A, Savelsbergh MW. Integer-programming software systems. Ann Oper Res. 2005;140(1):67–124. https://doi.org/10.1007/s10479-005-3968-2.
Liu CL, Layland JW. Scheduling algorithms for multiprogramming in a hard-real-time environment. J ACM. 1973;20(1):46–61. https://doi.org/10.1145/321738.321743.
Leung JYT, Whitehead J. On the complexity of fixed-priority scheduling of periodic, real-time tasks. Perform Eval. 1982;2(4):237–50. https://doi.org/10.1016/0166-5316(82)90024-4.
Mok AK. Multiprocessor scheduling in a hard real-time environment. In: Proc. Seventh Texas Conf. Compt. Syst. 1978.
Doulamis ND, et al. Fair scheduling algorithms in grids. IEEE Trans Parallel Distrib Syst. 2007;18(11):1630–48. https://doi.org/10.1109/TPDS.2007.1053.
Cho H, Ravindran B, Jensen ED. An optimal real-time scheduling algorithm for multiprocessors. In: 2006 27th IEEE international real-time systems symposium (RTSS'06). New York: IEEE; 2006.https://doi.org/10.1109/RTSS.2006.10.
Davis RI, Kato S. FPSL, FPCL and FPZL schedulability analysis. Real-Time Syst. 2012;48(6):750–88. https://doi.org/10.1007/s11241-012-9149-x.
Baruah SK, et al. Proportionate progress: a notion of fairness in resource allocation. Algorithmica. 1996;15(6):600–25. https://doi.org/10.1007/BF01940883.
Baruah SK, Gehrke JE, Plaxton CG. Fast scheduling of periodic tasks on multiple resources. In: Proceedings of 9th international parallel processing symposium. New York: IEEE; 1995. https://doi.org/10.1109/IPPS.1995.395946.
Anderson JH, Srinivasan A. Early-release fair scheduling. In: Proceedings 12th euromicro conference on real-time systems. Euromicro RTS 2000. New York: IEEE; 2000. https://doi.org/10.1109/EMRTS.2000.853990.
Anderson J, Srinivasan A. Pfair scheduling of sporadic tasks. Unpublished manuscript.
Aoun D, Déplanche AM. Pfair scheduling improvement to reduce interprocessor migrations. In: 16th international conference on real-time and network systems (RTNS 2008). 2008. https://hal.inria.fr/inria-00336513.
Deubzer M, et al. Efficient scheduling of reliable automotive multi-core systems with PD2 by Weakening ERfair task system requirements. In: Proceedings of the automotive safety & security. 2010.
Sarkar A, Ghose S, Chakrabarti PP. Sticky-ERfair: a task-processor affinity aware proportional fair scheduler. Real Time Syst. 2011;47(4):356–377. https://doi.org/10.1007/s11241-011-9120-2.
Anderson JH, Block A, Srinivasan A. "Quick-release fair scheduling." RTSS 2003. In: 24th IEEE real-time systems symposium, 2003. New York: IEEE; 2003. https://doi.org/10.1109/REAL.2003.1253261.
Block A, Anderson JH, Bishop G. Fine-grained task reweighting on multiprocessors. In: 11th IEEE international conference on embedded and real-time computing systems and applications (RTCSA'05). New York: IEEE; 2005. https://doi.org/10.1109/RTCSA.2005.53.
Dudani A, Mueller F, Zhu Y. Energy-conserving feedback EDF scheduling for embedded systems with real-time constraints. ACM SIGPLAN Notices. 2002;37(7):213–22. https://doi.org/10.1145/513829.513865.
Li D, Wu J. Energy-aware scheduling on multiprocessor platforms. Berlin: Springer Science & Business Media; 2012.
Yang C-Y, et al. Energy reduction techniques for systems with non-DVS components. In: 2009 IEEE conference on emerging technologies & factory automation. New York: IEEE; 2009. https://doi.org/10.1109/ETFA.2009.5347153.
Zakarya M, Ayaz U, Khan A. Power aware scheduling algorithm for real time task over multi processors. Middle-East J. Sci. Res. 15. 2013.
Davis H, Goldschmidt SR, Hennessy JL. Tango: a multiprocessor simulation and tracing system. Stanford: Computer Systems Laboratory, Stanford University; 1990.
Chapin SJ. Scheduling support mechanisms for autonomous, heterogeneous, distributed systems (Ph. D. Thesis). 1993.
Decotigny D, Puaut I. Artisst: an extensible framework for the simulation of real-time systems. Technical Report 1423. 2001.
The original LITMUSRT paper: Calandrino J, Leontyev H, Block A, Devi U, Anderson J. LITMUSRT: a testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE real-time systems symposium. 2006. p. 111–23. https://doi.org/10.1109/RTSS.2006.27.
The description of the current version: B. Brandenburg. Scheduling and locking in multiprocessor real-time operating systems. PhD thesis, UNC Chapel Hill; 2011.
Ahmad H, Badal N. CAPS: a tool for process scheduling in distributed environment. 2014.
Kathiravelu P, Veiga L. Concurrent and distributed cloudsim simulations. In: 2014 IEEE 22nd international symposium on modelling, analysis & simulation of computer and telecommunication systems. New York: IEEE; 2014. https://doi.org/10.1109/MASCOTS.2014.70.
Kurtin PS, Hausmans JP, Bekooij MJ. HAPI: an event-driven simulator for real-time multiprocessor systems. In: Proceedings of the 19th international workshop on software and compilers for embedded systems. New York: ACM; 2016. https://doi.org/10.1145/2906363.2906381.
Kasahara H, Narita S. Parallel processing of robot-arm control computation on a multimicroprocessor system. IEEE J Robot Autom. 1985;1(2):104–13. https://doi.org/10.1109/JRA.1985.1087004.
Chen CL, Lee CG, Hou ES. Efficient scheduling algorithms for robot inverse dynamics computation on a multiprocessor system. IEEE Trans Syst Man Cybern. 1988;18(5):729–43. https://doi.org/10.1109/21.21600.
Chen C-L. Efficient mapping algorithms for scheduling autonomous vehicles and robotic computations. 1988.
Al-Mouhamed M, Al-Maasarani A. Performance evaluation of scheduling precedence-constrained computations on message-passing systems. IEEE Trans Parallel Distrib Syst. 1994;5(12):1317–21. https://doi.org/10.1109/71.334905.
Wang DJ, Hu YH. Multiprocessor implementation of real-time DSP algorithms. IEEE Trans Very Large-Scale Integr Syst. 1995;3(3):393–403. https://doi.org/10.1109/92.406997.
Dell’Olmo P, Speranza MG, Tuza Z. Comparability graph augmentation for some multiprocessor scheduling problems. Discrete Appl Math. 1997;72(1–2):71–84. https://doi.org/10.1016/S0166-218X(96)00037-6.
Peng D-T, Shin KG, Abdelzaher TF. Assignment and scheduling communicating periodic tasks in distributed real-time systems. IEEE Trans Softw Eng. 1997;23(12):745–58. https://doi.org/10.1109/32.637388.
Zhu D, Melhem R, Childers BR. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems. IEEE Trans Parallel Distrib Syst. 2003;14(7):686–700. https://doi.org/10.1109/TPDS.2003.1214320.
Lam T-W, et al. Nonmigratory multiprocessor scheduling for response time and energy. IEEE Trans Parallel Distrib Syst. 2008;19(11):1527–39. https://doi.org/10.1109/TPDS.2008.115.
Kahraman C, et al. Multiprocessor task scheduling in multistage hybrid flow-shops: a parallel greedy algorithm approach. Appl Soft Comput. 2010;10(4):1293–300. https://doi.org/10.1016/j.asoc.2010.03.008.
Houshmand M, et al. Efficient scheduling of task graphs to multiprocessors using a combination of modified simulated annealing and list based scheduling. In: 2010 third international symposium on intelligent information technology and security informatics. New York: IEEE; 2010. https://doi.org/10.1109/IITSI.2010.137.
Al-Daoud H, Al-Azzoni I, Down DG. Power-aware linear programming based scheduling for heterogeneous computer clusters. Futur Gener Comput Syst. 2012;28(5):745–54. https://doi.org/10.1016/j.future.2011.04.001.
Hasan M, Goraya MS. Successive stage multi-round scheduling for cube based multi-processor systems. In: 2014 IEEE international conference on computational intelligence and computing research. New York: IEEE; 2014. https://doi.org/10.1109/ICCIC.2014.7238340.
Wang G, Li W, Hei X. Energy-aware real-time scheduling on heterogeneous multi-processor. In: 2015 49th annual conference on information sciences and systems (CISS). New York: IEEE; 2015. https://doi.org/10.1109/CISS.2015.7086884.
Grzonka D, et al. Artificial Neural Network support to monitoring of the evolutionary driven security aware scheduling in computational distributed environments. Future Gener Comput Syst. 2015;51:72–86. https://doi.org/10.1016/j.future.2014.10.031.
Wu P, Majeed S, Ryu M. Two approaches towards EDZL scheduling for performance asymmetric multiprocessors. In: 2016 IEEE international conference on network infrastructure and digital content (IC-NIDC). New York: IEEE; 2016. https://doi.org/10.1109/ICNIDC.2016.7974548.
Sharma K, Singh A, Singh B. Repository of arbitration cores (ROAC) for scheduling in various multi-processor SOCs. In: 2016 international conference on control, instrumentation, communication and computational technologies (ICCICCT). New York: IEEE; 2016. https://doi.org/10.1109/ICCICCT.2016.7987944.
Yang S, Deyu Q. Study on static task scheduling based on heterogeneous multi-core processor. In: 2017 international conference on computer network, electronic and automation (ICCNEA). New York: IEEE; 2017. https://doi.org/10.1109/ICCNEA.2017.38.
Zou X, Cheng AMK. Real-time multiprocessor scheduling algorithm based on information theory principles. IEEE Embedded Syst Lett. 2017;9(4):93–6. https://doi.org/10.1109/LES.2017.2761540.
Belmabrouk M, Marrakchi M. Comparison of parallel scheduling for triangular system resolution on multi-core processors. In: 2017 4th international conference on control, decision and information technologies (CoDIT). New York: IEEE; 2017. https://doi.org/10.1109/CoDIT.2017.8102668.
Jiang X, et al. Semi-federated scheduling of parallel real-time tasks on multiprocessors. In: 2017 IEEE real-time systems symposium (RTSS). New York: IEEE; 2017.https://doi.org/10.1109/RTSS.2017.00015.
Afshar S, et al. An optimal spin-lock priority assignment algorithm for real-time multi-core systems. In: 2017 IEEE 23rd international conference on embedded and real-time computing systems and applications (RTCSA). New York: IEEE; 2017. https://doi.org/10.1109/RTCSA.2017.8046310.
Zheng H, et al. Scheduling of non-preemptive strictly periodic tasks in multi-core systems. In: 2017 international conference on circuits, devices and systems (ICCDS). New York: IEEE; 2017. https://doi.org/10.1109/ICCDS.2017.8120477.
Baek H, Lee J, Shin I. Multi-level contention-free policy for real-time multiprocessor scheduling. J Syst Softw. 2018;137:36–49. https://doi.org/10.1016/j.jss.2017.11.027.
Ying K-C, Lin S-W. Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks. Expert Syst Appl. 2018;92:132–41. https://doi.org/10.1016/j.eswa.2017.09.032.
Alhussia H, et al. Practical performance analysis of real-time multiprocessor scheduling algorithms. J Fundam Appl Sci. 2018;10(2S):60–73.
Severo R, et al. Design and test of the RT-NKE task scheduling algorithm for multicore architectures. In: 2018 IEEE 19th Latin-American test symposium (LATS). New York: IEEE; 2018. https://doi.org/10.1109/LATW.2018.8349682.
Shin K, et al. Task scheduling algorithm using minimized duplications in homogeneous systems. J Parallel Distrib Comput. 2008;68(8):1146–56. https://doi.org/10.1016/j.jpdc.2008.04.001.
Hou ES, Ansari N, Ren H. A genetic algorithm for multiprocessor scheduling. IEEE Trans Parallel Distrib Syst. 1994;5(2):113–20. https://doi.org/10.1109/71.265940.
Wang L, et al. Task matching and scheduling in heterogeneous computing environments using a genetic-algorithm-based approach. J Parallel Distrib Comput. 1997;47(1):8–22. https://doi.org/10.1006/jpdc.1997.1392.
Zomaya AY, Ward C, Macey B. Genetic scheduling for parallel processor systems: comparative studies and performance issues. IEEE Trans Parallel Distrib Syst. 1999;10(8):795–812. https://doi.org/10.1109/71.790598.
Ercan MF, Oğuz C. Performance of local search heuristics on scheduling a class of pipelined multiprocessor tasks. Comput Electr Eng. 2005;31(8):537–55. https://doi.org/10.1016/j.compeleceng.2005.09.004.
Engin O, Ceran G, Yilmaz MK. An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems. Appl Soft Comput. 2011;11(3):3056–65. https://doi.org/10.1016/j.asoc.2010.12.006.
Chen RM, Huang YM. Multiconstraint task scheduling in multi-processor system by neural network. In: Proceedings tenth IEEE international conference on tools with artificial intelligence (Cat. No. 98CH36294). New York: IEEE; 1998. https://doi.org/10.1109/TAI.1998.744856.
Huang Y-M, Chen R-M. Scheduling multiprocessor job with resource and timing constraints using neural networks. IEEE Trans Syst Man Cybern Part B. 1999;29(4):490–502. https://doi.org/10.1109/3477.775265.
Chandiramani V, et al. A neural network approach to process assignment in multiprocessor systems based on the execution time. In: Proceedings of international conference on intelligent sensing and information processing, 2004. New York: IEEE; 2004. https://doi.org/10.1109/ICISIP.2004.1287678.
Damak N, et al. Differential evolution for solving multi-mode resource-constrained project scheduling problems. Comput Oper Res. 2009;36(9):2653–9. https://doi.org/10.1016/j.cor.2008.11.010.
Ebrahimi Moghaddam M, Bonyadi MR. An immune-based genetic algorithm with reduced search space coding for multiprocessor task scheduling problem. Int J Parallel Program. 2012;40(2):225–57. https://doi.org/10.1007/s10766-011-0179-0.
Kechadi M-T, Low KS, Goncalves G. Recurrent neural network approach for cyclic job shop scheduling problem. J Manuf Syst. 2013;32(4):689–99. https://doi.org/10.1016/j.jmsy.2013.02.001.
Ahmad SG, et al. A hybrid genetic algorithm for optimization of scheduling workflow applications in heterogeneous computing systems. J Parallel Distrib Comput. 2016;87:80–90. https://doi.org/10.1016/j.jpdc.2015.10.001.
Tsuchiya T, Osada T, Kikuno T. Genetics-based multiprocessor scheduling using task duplication. Microprocess Microsyst. 1998;22(3–4):197–207. https://doi.org/10.1016/S0141-9331(98)00079-9.
Wu AS, et al. An incremental genetic algorithm approach to multiprocessor scheduling. IEEE Trans Parallel Distrib Syst. 2004;15(9):824–34. https://doi.org/10.1109/TPDS.2004.38.
Omara FA, Arafa MM. Genetic algorithms for task scheduling problem. In: Abraham A, Hassanien AE, Siarry P, Engelbrecht A, editors. Foundations of computational intelligence, vol. 3. Studies in computational intelligence, vol. 203. Berlin: Springer; 2009.
Behnamian J, Ghomi SMTF. Multi-objective fuzzy multiprocessor flowshop scheduling. Appl Soft Comput. 2014;21:139–48. https://doi.org/10.1016/j.asoc.2014.03.031.
Xu Y, et al. A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Inf Sci. 2014;270:255–87. https://doi.org/10.1016/j.ins.2014.02.122.
Konar D, et al. An improved Hybrid Quantum-Inspired Genetic Algorithm (HQIGA) for scheduling of real-time task in multiprocessor system. Appl Soft Comput. 2017;53:296–307. https://doi.org/10.1016/j.asoc.2016.12.051.
Nanda AK, DeGroot D, Stenger DL. Scheduling directed task graphs on multiprocessors using simulated annealing. In: Proceedings of the 12th international conference on distributed computing systems. New York: IEEE; 1992. https://doi.org/10.1109/ICDCS.1992.235059.
Sivanandam SN, Visalakshi P, Bhuvaneswari A. Multiprocessor scheduling using hybrid particle swarm optimization with dynamically varying inertia. IJCSA. 2007;4(3):95–106.
Salleh S, Zomaya AY. Multiprocessor scheduling using mean-field annealing. Futur Gener Comput Syst. 1998;14(5–6):393–408. https://doi.org/10.1016/S0167-739X(98)00042-9.
Liu Y, et al. A scheduling algorithm in the randomly heterogeneous multi-core processor. In: 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD). New York: IEEE; 2016. https://doi.org/10.1109/FSKD.2016.7603512.
Choudhury P, Kumar R, Chakrabarti PP. Hybrid scheduling of dynamic task graphs with selective duplication for multiprocessors under memory and time constraints. IEEE Trans Parallel Distrib Syst 19(7):967–80. 2008. https://doi.org/10.1109/TPDS.2007.70784.
Choudhury P, Chakrabarti PP, Kumar R. Online scheduling of dynamic task graphs with communication and contention for multiprocessors. IEEE Trans Parallel Distrib Syst. 2012;23(1):126–33. https://doi.org/10.1109/TPDS.2011.104.
Li J, et al. Machine learning based online performance prediction for runtime parallelization and task scheduling. In: 2009 IEEE international symposium on performance analysis of systems and software. New York: IEEE; 2009. https://doi.org/10.1109/ISPASS.2009.4919641.
Tabba N, Entezari-Maleki R, Movaghar A. Reduced communications fault tolerant task scheduling algorithm for multiprocessor systems. Procedia Eng. 2012;29:3820–5. https://doi.org/10.1016/j.proeng.2012.01.577.
Xu Y, et al. A DAG scheduling scheme on heterogeneous computing systems using double molecular structure-based chemical reaction optimization. J Parallel Distrib Comput. 2013;73(9):1306–22. https://doi.org/10.1016/j.jpdc.2013.05.005.
Gomatheeshwari B, Selvakumar J. Token based energy aware scheduling algorithms for heterogeneous multi-core. In: 2017 international conference on nextgen electronic technologies: silicon to software (ICNETS2). New York: IEEE; 2017. https://doi.org/10.1109/ICNETS2.2017.8067887.
Khan H, Bashir Q, Hashmi MU. Scheduling based energy optimization technique in multiprocessor embedded systems. In: 2018 international conference on engineering and emerging technologies (ICEET). New York: IEEE; 2018. https://doi.org/10.1109/ICEET1.2018.8338643.
Yun D, Wu CQ, Gu Y. An integrated approach to workflow mapping and task scheduling for delay minimization in distributed environments. J Parallel Distrib Comput. 2015;84:51–64. https://doi.org/10.1016/j.jpdc.2015.07.004.
Bonabeau E, et al. Swarm intelligence: from natural to artificial systems. No. 1. Oxford: Oxford University Press; 1999.
Eberhart RC, Shi Y, Kennedy J. Swarm intelligence. Amsterdam: Elsevier; 2001.
Tan Y. Fundamentals of computational swarm intelligence. 2009. p. 17–8.
Abdelhalim MB. Task assignment for heterogeneous multiprocessors using re-excited particle swarm optimization. In: 2008 international conference on computer and electrical engineering. New York: IEEE; 2008. https://doi.org/10.1109/ICCEE.2008.41.
Josephson J, Ramesh R. A novel algorithm for real time task scheduling in multiprocessor environment. Cluster Comput. 2018. https://doi.org/10.1007/s10586-018-2083-5.
Ziarati K, Akbari R, Zeighami V. On the performance of bee algorithms for resource-constrained project scheduling problem. Appl Soft Comput. 2011;11(4):3720–33. https://doi.org/10.1016/j.asoc.2011.02.002.
Zhisheng Z. Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system. Expert Syst Appl. 2010;37(2):1800–3. https://doi.org/10.1016/j.eswa.2009.07.042.
Sarangi A, et al. Swarm intelligence based techniques for digital filter design. Appl Soft Comput. 2014;25:530–4. https://doi.org/10.1016/j.asoc.2013.06.001.
Lo S-T, et al. Multiprocessor system scheduling with precedence and resource constraints using an enhanced ant colony system. Expert Syst Appl. 2008;34(3):2071–81. https://doi.org/10.1016/j.eswa.2007.02.022.
Omkar SN, et al. Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures. Expert Syst Appl. 2009;36(8):11312–22. https://doi.org/10.1016/j.eswa.2009.03.006.
Kiyarazm O, Moeinzadeh MH, Sharifian-R S. A new method for scheduling load balancing in multi-processor systems based on PSO. In: 2011 second international conference on intelligent systems, modelling and simulation. New York: IEEE; 2011. https://doi.org/10.1109/ISMS.2011.73.
Thanushkodi K, Deeba K. On performance analysis of hybrid algorithm (improved PSO with simulated annealing) with GA, PSO for multiprocessor job scheduling. WSEAS Trans Comput. 2011;10(9):287–300.
Dasgupta D. An overview of artificial immune systems and their applications. In: Dasgupta D, editor. Artificial immune systems and their applications. Berlin: Springer; 1993.
De Castro LN, Castro LN, Timmis J. An introduction to artificial immune systems: a new computational intelligence paradigm. 2002.
De Castro LN, Von Zuben FJ. Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput. 2002;6(3):239–51. https://doi.org/10.1109/TEVC.2002.1011539.
Dasgupta D. Advances in artificial immune systems. IEEE Comput Intell Mag. 2006;1(4):40–9. https://doi.org/10.1109/MCI.2006.329705.
Dasgupta D, Senhua Yu, Nino F. Recent advances in artificial immune systems: models and applications. Appl Soft Comput. 2011;11(2):1574–87. https://doi.org/10.1016/j.asoc.2010.08.024.
Nanda SJ. Artificial immune systems: principle, algorithms and applications. Diss. 2009.
Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag. 2002;22(3):52–67. https://doi.org/10.1109/MCS.2002.1004010.
Tang WJ, Wu QH, Saunders JR. Bacterial foraging algorithm for dynamic environments. In: 2006 IEEE international conference on evolutionary computation. New York: IEEE; 2006. https://doi.org/10.1109/CEC.2006.1688462.
Mishra S. A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans Evol Comput. 2005;9(1):61–73. https://doi.org/10.1109/TEVC.2004.840144.
Greensmith J, Aickelin U. The dendritic cell algorithm (Ph. D. thesis). University of Nottingham; 2007.
Greensmith J, Aickelin U, Twycross J. Articulation and clarification of the dendritic cell algorithm. In: Bersini H, Carneiro J, editors. Artificial immune systems. ICARIS 2006. Lecture notes in computer science, vol. 4163. Berlin: Springer; 2006. https://doi.org/10.1007/11823940_31.
Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. 2012;17(12):4831–45. https://doi.org/10.1016/j.cnsns.2012.05.010.
Swiecicka A, Seredynski F, Zomaya AY. Multiprocessor scheduling and rescheduling with use of cellular automata and artificial immune system support. IEEE Trans Parallel Distrib Syst. 2006;17(3):253–62. https://doi.org/10.1109/TPDS.2006.38.
Nayak SK, Padhy SK, Panigrahi SP. A novel algorithm for dynamic task scheduling. Future Gener Comput Syst. 2012;28(5):709–17. https://doi.org/10.1016/j.future.2011.12.001.
Tripathy B, Dash S, Padhy SK. Multiprocessor scheduling and neural network training methods using shuffled frog-leaping algorithm. Comput Ind Eng. 2015;80:154–8. https://doi.org/10.1016/j.cie.2014.12.013.
Marichelvam MK, Prabaharan T, Yang XS. Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Appl Soft Comput. 2014;19:93–101. https://doi.org/10.1016/j.asoc.2014.02.005.
Nayak SK, Panda CS, Padhy SK. Efficient multiprocessor scheduling using water cycle algorithm. In: Ray K, Pant M, Bandyopadhyay A, editors. Soft computing applications. Studies in computational intelligence, vol. 761. Singapore: Springer; 2018.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the topical collection “Intelligent Systems” guest edited by Geetha Ganesan, Lalit Garg, Renu Dhir, Vijay Kumar and Manik Sharma.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Acharya, B., Panda, S. & Sivakumar, E. An Analytical Study of Multiprocessor Scheduling Using Metaheuristic Approach. SN COMPUT. SCI. 3, 497 (2022). https://doi.org/10.1007/s42979-022-01398-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-022-01398-1