Real-Time Automatic Seizure Detection Using Ordinary Kriging Method in an Edge-IoMT Computing Paradigm | SN Computer Science Skip to main content

Advertisement

Log in

Real-Time Automatic Seizure Detection Using Ordinary Kriging Method in an Edge-IoMT Computing Paradigm

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Epilepsy is one of the leading neurological diseases in the world, affecting approximately 70 million of the world’s population and often results in early mortality if not properly managed. The primary purpose of seizure detection is to reduce threat to life in the event of a seizure crisis. Previous efforts in the literature concentrate mostly on performance based on accuracy and other similar metrics. However, there is a short time lapse between the onset of a seizure attack and a potential injury that could claim the life of the patient. Therefore, there is the need for a more time-sensitive seizure detection model. We hereby propose a real-time seizure detection model in an edge computing paradigm using the ordinary kriging method, relying on the premise that the brain can be modeled as a three-dimensional spatial object, similar to a geographical panorama where kriging excels. Fractal dimensional features were extracted from patients’ electroencephalogram (EEG) signals and then classified using the proposed ordinary kriging model. The proposed model achieves a training accuracy of 99.4% and a perfect sensitivity, specificity, precision and testing accuracy. Hardware implementation in an edge computing environment results in a mean detection latency of 0.85 s. To the best of the authors’ knowledge, this is the first work that uses the kriging method for early detection of seizure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahammad N, Fathima T, Joseph P. Detection of epileptic seizure event and onset using EEG. BioMed Res Int. 2014. https://doi.org/10.1155/2014/450573

    Article  Google Scholar 

  2. Al-Fahoum AS, Al-Fraihat AA. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci. 2014. https://doi.org/10.1155/2014/730218

    Article  Google Scholar 

  3. Altaf MAB, Zhang C, Yoo J. A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J Solid-State Circ. 2015;50(11):2728–40.

    Article  Google Scholar 

  4. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys Rev E. 2001;64(6):061907.

    Article  Google Scholar 

  5. Braham H, Jemaa SB, Sayrac B, Fort G, Moulines E. Low complexity spatial interpolation for cellular coverage analysis. In: 2014 12th Int. Symp. on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), 2014; pp. 188–195. IEEE

  6. Caywood MS, Roberts DM, Colombe JB, Greenwald HS, Weiland MZ. Gaussian Process Regression for predictive but interpretable machine learning models: An example of predicting mental workload across tasks. Front Hum Neurosci. 2017;10:647.

    Article  Google Scholar 

  7. Daoud HG, Abdelhameed AM, Bayoumi M. Automatic epileptic seizure detection based on empirical mode decomposition and deep neural network. In: 2018 IEEE 14th Int. Collq. on Sig. Proc. & Its App. (CSPA), 2018; pp. 182–186. IEEE

  8. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, Piero P. Epilepsy. Nat Rev Dis Primers. 2018;4:18024. https://doi.org/10.1038/nrdp.2018.24

    Article  Google Scholar 

  9. Faul S, Gregorcic G, Boylan G, Marnane W, Lightbody G, Connolly S. Gaussian process modeling of EEG for the detection of neonatal seizures. IEEE Trans Biomed Eng. 2007;54(12):2151–62.

    Article  Google Scholar 

  10. Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure. 2015;26:56–64.

    Article  Google Scholar 

  11. Géron A. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. Newton: O’Reilly Media, Inc.; 2017.

    Google Scholar 

  12. Giraldo R, Delicado P, Mateu J. Continuous time-varying kriging for spatial prediction of functional data: an environmental application. J Agric Biol Environ Stat. 2010;15(1):66–82.

    Article  MathSciNet  Google Scholar 

  13. Goh C, Hamadicharef B, Henderson G, Ifeachor E. Comparison of fractal dimension algorithms for the computation of EEG biomarkers for dementia. In: Proceedings of the 2nd International Conference on Computational Intelligence in Medicine and Healthcare (CIMED2005), pp. 2005;464–471

  14. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215–20.

    Article  Google Scholar 

  15. Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N. Neural classification of lung sounds using wavelet coefficients. Comput Biol Med. 2004;34(6):523–37.

    Article  Google Scholar 

  16. Kaushal G, Singh A, Jain VK. Better approach for denoising EEG signals. In: Proc. 5th Int. Conf. on Wireless Networks and Embedded Syst. (WECON), 2016; pp. 1–3

  17. Khan YU, Farooq O, Sharma P. Automatic detection of seizure onset in pediatric EEG. Int J Embed Syst Appl. 2012;2:81–9.

    Google Scholar 

  18. Kumar Y, Dewal M, Anand R. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Proc. 2014;8(7):1323–34.

    Article  Google Scholar 

  19. Lee GR, Gommers R, Wasilewski F, Wohlfahrt K, O’Leary A. PyWavelets: a Python package for wavelet analysis. J Open Source Softw. 2019;4(36):1237.

    Article  Google Scholar 

  20. Liu X, Zhu Q, Lu H. Modeling multiresponse surfaces for airfoil design with multiple-output-Gaussian-process regression. J Aircr. 2014;51(3):740–7.

    Article  Google Scholar 

  21. Manel AR, Biradar S, Shastri R. Review paper on feature extraction methods for EEG signal analysis. In: Dept. Of Electronics and Telecom. Eng, VPCOE/Savitribi Phule University, 2015; pp. 2349–6967. IJEEBS

  22. Marquez A, Dunn M, Ciriaco J, Farahmand F. iSeiz: A low-cost real-time seizure detection system utilizing cloud computing. In: 2017 IEEE Glob. Hum. Tech. Conf., 2017;pp. 1–7. IEEE

  23. Mohanty SP, Yanambaka VP, Kougianos E, Puthal D. PUFchain: Hardware-assisted blockchain for sustainable simultaneous device and data security in the internet of everything (IoE). arXiv Computer Science 2019;1909.06496

  24. Moser EI, Roudi Y, Witter MP, Kentros C, Bonhoeffer T, Moser MB. Grid cells and cortical representation. Nat Rev Neurosci. 2014;15(7):466.

    Article  Google Scholar 

  25. Moura A, Lopez S, Obeid I, Picone J. A comparison of feature extraction methods for EEG signals. In: 2015 IEEE Sig. Proc. in Med and Bio. Symp. (SPMB), 2015;pp. 1–2. IEEE

  26. Najarian K, Splinter R. Biomedical signal and image processing. Boca Roton: CRC Press; 2005.

    Book  Google Scholar 

  27. Nigam VP, Graupe D. A neural-network-based detection of epilepsy. Neurol Res. 2004;26(1):55–60.

    Article  Google Scholar 

  28. Oh SH, Lee YR, Kim HN. A novel EEG feature extraction method using Hjorth parameter. Int J Electron Electric Eng. 2014;2(2):106–10.

    Article  Google Scholar 

  29. Olokodana0 IL, Mohanty SP, Kougianos E. Ordinary-kriging based real-time seizure detection in an edge computing paradigm. In: Proc. IEEE International Conference on consumer electronics (ICCE), 2020;pp. 1–6

  30. Park C, Choi G, Kim J, Kim S, Kim TJ, Min K, Jung KY, Chong J. Epileptic seizure detection for multi-channel EEG with deep convolutional neural network. In: 2018 International Conference on Electronics, Information, and Communication (ICEIC), 2018;pp. 1–5. IEEE

  31. Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In: Proceedings Eighth IEEE Symp. on Comp.-Based Med. Sys., 1995;pp. 212–217. IEEE

  32. Puthal D, Mohanty SP, Bhavake SA, Morgan G, Ranjan R. Fog Computing Security Challenges and Future Directions. Energy Secur. 2019;8(3):92–6. https://doi.org/10.1109/MCE.2019.2893674.

    Article  Google Scholar 

  33. Pyrcz MJ, Deutsch CV. Geostatistical reservoir modeling. Oxford: Oxford University Press; 2014.

    Google Scholar 

  34. Sayeed A, Mohanty SP, Kougianos E, Yanambaka VP, Zaveri H. A robust and fast seizure detector for IoT edge. In: 2018 IEEE Int. Conf. Smart Elect. Sys. (iSES), 2018;pp. 156–160. IEEE

  35. Sayeed MA, Mohanty SP, Kougianos E. cSeiz: an edge-device for accurate seizure detection and control for smart healthcare. arXiv Electrical Engineering and Systems Science 2019;1908.08130

  36. Sayeed MA, Mohanty SP, Kougianos E, Zaveri H. A fast and accurate approach for real-time seizure detection in the IoMT. In: 2018 IEEE Int. Conf. Smart Cities (ISC2), 2018;pp. 1–5. IEEE

  37. Sayeed MA, Mohanty SP, Kougianos E, Zaveri HP. eSeiz: an edge-device for accurate seizure detection for smart healthcare. IEEE Trans Consum Electron. 2019;65(3):379–87. https://doi.org/10.1109/TCE.2019.2920068.

    Article  Google Scholar 

  38. Sayeed MA, Mohanty SP, Kougianos E, Zaveri HP. Neuro-detect: a machine learning-based fast and accurate seizure detection system in the IoMT. IEEE Trans Consum Electron. 2019;65(3):359–68. https://doi.org/10.1109/TCE.2019.2917895.

    Article  Google Scholar 

  39. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016;3(5):637–46. https://doi.org/10.1109/JIOT.2016.2579198.

    Article  Google Scholar 

  40. Shoeb AH. Application of machine learning to epileptic seizure onset detection and treatment. Ph.D. thesis, Massachusetts Institute of Technology 2009.

  41. Shoeb AH, Guttag JV. Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th Int. Conf. on Mach. Learning (ICML-10), 2010;pp. 975–982

  42. Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5(6):a022426.

    Article  Google Scholar 

  43. Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl. 2010;37(12):8659–66.

    Article  Google Scholar 

  44. Supratak A, Li L, Guo Y. Feature extraction with stacked autoencoders for epileptic seizure detection. In: 2014 36th Annual international conference of the IEEE engineering in medicine and biology society, 2014;pp. 4184–4187. IEEE

  45. Supriya S, Siuly S, Wang H, Cao J, Zhang Y. Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access. 2016;4:6554–66.

    Article  Google Scholar 

  46. Van Esbroeck A, Smith L, Syed Z, Singh S, Karam Z. Multi-task seizure detection: addressing intra-patient variation in seizure morphologies. Mach Learn. 2016;102(3):309–21.

    Article  MathSciNet  Google Scholar 

  47. Vergara PM, de la Cal E, Villar JR, González VM, Sedano J. An IoT platform for epilepsy monitoring and supervising. J Sens. 2017. https://doi.org/10.1155/2017/6043069

    Article  Google Scholar 

  48. Vidyaratne LS, Iftekharuddin KM. Real-Time Epileptic Seizure Detection Using EEG. IEEE Trans Neural Syst Rehabil Eng. 2017;25(11):2146–56. https://doi.org/10.1109/TNSRE.2017.2697920.

    Article  Google Scholar 

  49. Wen T, Zhang Z. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification. Medicine. 2017;96(19).

  50. Williams CK, Rasmussen CE. Gaussian processes for machine learning. Cambridge: MIT Press; 2006.

    MATH  Google Scholar 

  51. Yuan Y, Xun G, Jia K, Zhang A. A multi-context learning approach for EEG epileptic seizure detection. BMC Syst Biol. 2018;12(6):47–57.

    Google Scholar 

  52. Zaleshina M, Zaleshin A. The Brain as A Multi-layered. Map Scales and Reference Points For Pattern Recognition in Neuroimaging. Eur J Geogr. 2017;8(1):6–31.

    Google Scholar 

  53. Zapata-Ferrer A, Maya LR, Gonzalez AG, Pantaleon M, García MC, Nasab N, Valencia RH, Herrera MV. Detecting the onset of epileptic seizures. IEEE Eng Med Biol Mag. 1999;18(3):78–83.

    Article  Google Scholar 

Download references

Acknowledgements

This article is an extended version of our previous conference paper presented at [29].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraju P. Mohanty.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest and there was no human or animal testing or participation involved in this research. All data were obtained from public domain sources.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Technologies and Components for Smart Cities” guest edited by Himanshu Thapliyal, Saraju P. Mohanty, Srinivas Katkoori and Kailash Chandra Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olokodana, I.L., Mohanty, S.P., Kougianos, E. et al. Real-Time Automatic Seizure Detection Using Ordinary Kriging Method in an Edge-IoMT Computing Paradigm. SN COMPUT. SCI. 1, 258 (2020). https://doi.org/10.1007/s42979-020-00272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00272-2

Keywords

Navigation