Abstract
Detecting momentary relationship state and quality in romantic couples is an important endeavor for relationship research, couple therapy, and of course couples themselves. Yet current methods to achieve this are intrusive, asynchronous, plagued by ceiling effects, and only assess subjective responses to questionnaires while trying to capture the objective state of a relationship. According to social appraisal theory, human beings rely on emotional responses to assess interpersonal situations, a key element for relationship functioning in couples. Using couples is particularly advantageous as strong emotional reactions are triggered in romantic relationships. Here, we employ deep learning methods to assess the momentary relationship state of romantic couples from predominantly stock images via facial and bodily emotion expression and other features. Our new model, DeepConnection, comprises pre-trained residual neural networks, spatial pyramid pooling layers, and power mean transformations to extract relevant features from images for binary classification. With this, we achieved an average accuracy of nearly 97% on a separate validation dataset. We also engaged in model interpretation using Gradient-weighted Class Activation Mapping (Grad-CAM) to identify which features allow DeepConnection to detect binarized momentary relationship state. To demonstrate generalizability and robustness, we used DeepConnection to analyze videos of couples exhibiting a range of different postures and facial expressions. Here, we achieved an average accuracy of about 85% with a trained DeepConnection model. The work presented here could inform couples, advance relationship research, and find application in couple therapy to assist the therapist.
Similar content being viewed by others
Availability of data and material
All data and materials can be obtained when using the code provided below.
References
Ainsworth, M. D. S., & Bell, S. M. (1970). Attachment, Exploration, and Separation: Illustrated by the Behavior of One-Year-Olds in a Strange Situation. Child Development, 41(1), 49. https://doi.org/10.2307/1127388.
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. (2019). Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements. Psychological Science in the Public Interest, 20(1), 1–68. https://doi.org/10.1177/1529100619832930.
Barrett, L. F., Mesquita, B., & Gendron, M. (2011). Context in Emotion Perception. Current Directions in Psychological Science, 20(5), 286–290. https://doi.org/10.1177/0963721411422522.
Barrett, L. F., Robin, L., Pietromonaco, P. R., & Eyssell, K. M. (1998). Are Women the “More Emotional” Sex? Evidence From Emotional Experiences in Social Context. Cognition & Emotion, 12(4), 555–578. https://doi.org/10.1080/026999398379565.
Black, R. M. (2011). Cultural Considerations of Hand Use. Journal of Hand Therapy, 24(2), 104–111. https://doi.org/10.1016/j.jht.2010.09.067.
Bowlby, J. (1988). A secure base: Parent-child attachment and healthy human development. Basic Books.
Butler, E. A. (2011). Temporal Interpersonal Emotion Systems: The “TIES” That Form Relationships. Personality and Social Psychology Review, 15(4), 367–393. https://doi.org/10.1177/1088868311411164.
Bylander, T. (2002). Estimating Generalization Error on Two-Class Datasets Using Out-of-Bag Estimates. Machine Learning, 48, 287–297.
Carrere, S., & Gottman, J. M. (1999). Predicting divorce among newlyweds from the first three minutes of a marital conflict discussion. Family Process, 38(3), 293–301. https://doi.org/10.1111/j.1545-5300.1999.00293.x.
Carstensen, L. L., Gottman, J. M., & Levenson, R. W. (1995). Emotional behavior in long-term marriage. Psychology and Aging, 10(1), 140–149. https://doi.org/10.1037/0882-7974.10.1.140.
Chandra, A., Mosher, W. D., Copen, C., & Sionean, C. (2011). Sexual behavior, sexual attraction, and sexual identity in the United States: Data from the 2006–2008 National Survey of Family Growth. National Health Statistics Reports, 36, 1–36.
Chen, I., Johansson, F. D., & Sontag, D. (2018). Why is my classifier discriminatory? http://arxiv.org/abs/1805.12002
Coan, J. A., & Gottman, J. M. (2007). The specific affect coding system (SPAFF). In Handbook of emotion elicitation and assessment (pp. 267–285).
Cohan, C. L., & Bradbury, T. N. (1997). Negative life events, marital interaction, and the longitudinal course of newlywed marriage. Journal of Personality and Social Psychology, 73(1), 114–128. https://doi.org/10.1037/0022-3514.73.1.114.
Cordaro, D. T., Sun, R., Keltner, D., Kamble, S., Huddar, N., & McNeil, G. (2018). Universals and cultural variations in 22 emotional expressions across five cultures. Emotion, 18(1), 75–93. https://doi.org/10.1037/emo0000302.
Dachapally, P. R. (2017). Facial Emotion Detection Using Convolutional Neural Networks and Representational Autoencoder Units. http://arxiv.org/abs/1706.01509
Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-fei, L. (2009). Imagenet: A large-scale hierarchical image database. In CVPR.
Ekman, P., & Friesen, W. V. (1975). Unmasking the face: A guide to recognizing emotions from facial clues. Prentice-Hall.
Ekman, P., & Friesen, W. V. (1978). Facial action coding system: Manual. Consulting Psychologists Press.
Fischer, A. H., & Manstead, A. S. R. (2016). Social functions of emotion and emotion regulation. In Handbook of emotion (pp. 456–469).
Floyd, F. J., Baucom, D. H., Godfrey, J. J., & Palmer, C. (1998). Observational methods. In comprehensive clinical psychology (pp. 1–21). Elsevier. https://doi.org/https://doi.org/10.1016/B0080-4270(73)00223-6
Funk, J. L., & Rogge, R. D. (2007). Testing the ruler with item response theory: Increasing precision of measurement for relationship satisfaction with the Couples Satisfaction Index. Journal of Family Psychology, 21(4), 572–583. https://doi.org/10.1037/0893-3200.21.4.572.
Gable, S. L., Reis, H. T., Impett, E. A., & Asher, E. R. (2004). What do you do when things go right? The intrapersonal and interpersonal benefits of sharing positive events. Journal of Personality and Social Psychology, 87(2), 228–245. https://doi.org/10.1037/0022-3514.87.2.228.
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249–256. http://proceedings.mlr.press/v9/glorot10a.html
Gottman, J. M., Coan, J., Carrere, S., & Swanson, C. (1998). Predicting marital happiness and stability from newlywed interactions. Journal of Marriage and the Family, 60(1), 5–22. https://doi.org/10.2307/353438.
Gottman, John M., Murray, J. D., Swanson, C. C., Tyson, R., & Swanson, K. R. (2002). The mathematics of marriage: Dynamic nonlinear models. MIT Press.
Gottman, J. M., Levenson, R. W., Gross, J., Frederickson, B. L., McCoy, K., Rosenthal, L., et al. (2003). Correlates of gay and lesbian couples’ relationship satisfaction and relationship dissolution. Journal of Homosexuality, 45(1), 23–43. https://doi.org/10.1300/J082v45n01_02.
Grandey, A., Rafaeli, A., Ravid, S., Wirtz, J., & Steiner, D. D. (2010). Emotion display rules at work in the global service economy: The special case of the customer. Journal of Service Management, 21(3), 388–412. https://doi.org/10.1108/09564231011050805.
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348–362. https://doi.org/10.1037/0022-3514.85.2.348.
Grossmann, I., Ellsworth, P. C., & Hong, Y. (2012). Culture, attention, and emotion. Journal of Experimental Psychology: General, 141(1), 31–36. https://doi.org/10.1037/a0023817.
Gu, Y., Mai, X., & Luo, Y. (2013). Do bodily expressions compete with facial expressions? time course of integration of emotional signals from the face and the body. PLoS ONE, 8(7), e66762. https://doi.org/10.1371/journal.pone.0066762.
He, K., Zhang, X., Ren, S., & Sun, J. (2014). Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. 8691, 346–361. https://doi.org/https://doi.org/10.1007/978-3-319-10578-9_23
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. http://arxiv.org/abs/1512.03385
Hénaff, O. J., Razavi, A., Doersch, C., Eslami, S. M. A., & Oord, A. van den. (2019). Data-Efficient Image Recognition with Contrastive Predictive Coding. http://arxiv.org/abs/1905.09272
Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The relation between short-term emotion dynamics and psychological well-being: A meta-analysis. Psychological Bulletin, 141(4), 901–930. https://doi.org/10.1037/a0038822.
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2016). Densely Connected Convolutional Networks. http://arxiv.org/abs/1608.06993
Inoue, H. (2019). Multi-Sample Dropout for Accelerated Training and Better Generalization. http://arxiv.org/abs/1905.09788
Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. http://arxiv.org/abs/1502.03167
Jack, R. E., Caldara, R., & Schyns, P. G. (2012). Internal representations reveal cultural diversity in expectations of facial expressions of emotion. Journal of Experimental Psychology: General, 141(1), 19–25. https://doi.org/10.1037/a0023463.
Johnson, S. M., Hunsley, J., Greenberg, L., & Schindler, D. (2006). Emotionally Focused Couples Therapy: Status and Challenges. Clinical Psychology: Science and Practice, 6(1), 67–79. https://doi.org/10.1093/clipsy.6.1.67.
Karney, B. R., & Bradbury, T. N. (1995). The longitudinal course of marital quality and stability: A review of theory, methods, and research. Psychological Bulletin, 118(1), 3–34. https://doi.org/10.1037/0033-2909.118.1.3.
Kashdan, T. B., Volkmann, J. R., Breen, W. E., & Han, S. (2007). Social anxiety and romantic relationships: The costs and benefits of negative emotion expression are context-dependent. Journal of Anxiety Disorders, 21(4), 475–492. https://doi.org/10.1016/j.janxdis.2006.08.007.
Keltner, D., & Haidt, J. (2001). Social functions of emotions. In Emotions: Currrent issues and future directions (pp. 192–213). Guilford Press.
Keltner, D., & Kring, A. M. (1998). Emotion, Social Function, and Psychopathology. Review of General Psychology, 2(3), 320–342. https://doi.org/10.1037/1089-2680.2.3.320.
Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. http://arxiv.org/abs/1412.6980
Kirby, M. (1972). On Acting and Not-Acting. The Drama Review: TDR, 16(1), 3. https://doi.org/10.2307/1144724.
Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The ‘Trier Social Stress Test’ – a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1–2), 76–81. https://doi.org/10.1159/000119004.
Kitayama, S., Mesquita, B., & Karasawa, M. (2006). Cultural affordances and emotional experience: Socially engaging and disengaging emotions in Japan and the United States. Journal of Personality and Social Psychology, 91(5), 890–903. https://doi.org/10.1037/0022-3514.91.5.890.
Kret, M. E., Pichon, S., Grèzes, J., & de Gelder, B. (2011). Similarities and differences in perceiving threat from dynamic faces and bodies An fMRI study. NeuroImage, 54(2), 1755–1762. https://doi.org/10.1016/j.neuroimage.2010.08.012.
Kurdek, L. A. (2005). What do we know about gay and lesbian couples? Current Directions in Psychological Science, 14(5), 251–254. https://doi.org/10.1111/j.0963-7214.2005.00375.x.
Kurien, D. N. (2010). Body language: Silent communicator at the workplace., 4, 29–36.
Laurenceau, J.-P., Barrett, L. F., & Rovine, M. J. (2005). The interpersonal process model of intimacy in marriage: a daily-diary and multilevel modeling approach. Journal of Family Psychology, 19(2), 314–323. https://doi.org/10.1037/0893-3200.19.2.314.
Laursen, B., & Hafen, C. A. (2009). Future directions in the study of close relationships: conflict is bad (except when it’s not): conflict is bad (except when it’s not). Social Development, 19(4), 858–872. https://doi.org/10.1111/j.1467-9507.2009.00546.x.
Lazarus, R. S. (1991). Emotion and adaptation. Oxford: Oxford University Press.
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791.
Levenson, R. W. (1994). Human emotions: A functional view. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion: Fundamental questions (pp. 123–126). Oxford: Oxford University Press.
Li, S., & Deng, W. (2018). Deep Facial Expression Recognition: A Survey. http://arxiv.org/abs/1804.08348
Li, Z., Dekel, T., Cole, F., Tucker, R., Snavely, N., Liu, C., & Freeman, W. T. (2019). Learning the Depths of Moving People by Watching Frozen People. http://arxiv.org/abs/1904.11111
Loshchilov, I., & Hutter, F. (2016). SGDR: Stochastic Gradient Descent with Warm Restarts.. http://arxiv.org/abs/1608.03983
Luginbuehl, T., & Schoebi, D. (2019). Emotion dynamics and responsiveness in intimate relationships. Emotion. https://doi.org/10.1037/emo0000540.
Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion, 5(2), 175–190. https://doi.org/10.1037/1528-3542.5.2.175.
Mikolajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. International Interdisciplinary PhD Workshop (IIPhDW), 2018, 117–122. https://doi.org/10.1109/IIPHDW.2018.8388338.
Mohammadpour, M., Khaliliardali, H., Hashemi, S. Mohammad. R., & AlyanNezhadi, Mohammad. M. (2017). Facial emotion recognition using deep convolutional networks. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), 0017–0021. https://doi.org/https://doi.org/10.1109/KBEI.2017.8324974
Moors, A., Ellsworth, P. C., Scherer, K. R., & Frijda, N. H. (2013). Appraisal theories of emotion: state of the art and future development. Emotion Review, 5(2), 119–124. https://doi.org/10.1177/1754073912468165.
Nair, V., & Hinton, G. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. Proceedings of the 27th International Conference on International Conference on Machine Learning, 807–814.
Parkinson, B. (2001). Putting appraisal in context. In Series in affective science. Appraisal processes in emotion: Theory, methods, research (pp. 173–186).
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic Differentiation in PyTorch. In NIPS Autodiff Workshop.
Peplau, L. A., & Fingerhut, A. W. (2007). The close relationships of lesbians and gay men. Annual Review of Psychology, 58(1), 405–424. https://doi.org/10.1146/annurev.psych.58.110405.085701.
Prechelt, L. (2012). Early Stopping—But When? In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural Networks: Tricks of the Trade (Vol. 7700, pp. 53–67). Springer Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-642-35289-8_5
Reis, H. T., & Gable, S. L. (2015). Responsiveness. Current Opinion in Psychology, 1, 67–71. https://doi.org/10.1016/j.copsyc.2015.01.001.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. http://arxiv.org/abs/1505.04597
Roseman, I. J., Wiest, C., & Swartz, T. S. (1994). Phenomenology, behaviors, and goals differentiate discrete emotions. Journal of Personality and Social Psychology, 67(2), 206–221. https://doi.org/10.1037/0022-3514.67.2.206.
Rosenbusch, H., Aghaei, M., Evans, A. M., & Zeelenberg, M. (2020). Psychological trait inferences from women’s clothing: Human and machine prediction. Journal of Computational Social Science. https://doi.org/10.1007/s42001-020-00085-6.
Saslow, L. R., Muise, A., Impett, E. A., & Dubin, M. (2013). Can you see how happy we are? facebook images and relationship satisfaction. Social Psychological and Personality Science, 4(4), 411–418. https://doi.org/10.1177/1948550612460059.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2016). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. http://arxiv.org/abs/1610.02391
Shaver, P., Hazan, C., & Bradshaw, D. (1988). Love as attachment. In The psychology of love (pp. 68–99). Yale University Press, Yale
Shiota, M., Campos, B., Keltner, D., & Hertenstein, M. J. (2004). Positive emotion and the regulation of interpersonal relationships. The Regulation of Emotion. https://doi.org/10.4324/9781410610898.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.
Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. http://arxiv.org/abs/1906.02243
Sun, Q., Schiele, B., & Fritz, M. (2017). A Domain Based Approach to Social Relation Recognition. http://arxiv.org/abs/1704.06456
Tommasi, T., Patricia, N., Caputo, B., & Tuytelaars, T. (2015). A Deeper Look at Dataset Bias. http://arxiv.org/abs/1505.01257
Tsai, J. L., Knutson, B., & Fung, H. H. (2006). Cultural variation in affect valuation. Journal of Personality and Social Psychology, 90(2), 288–307. https://doi.org/10.1037/0022-3514.90.2.288.
Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: a brief review. Computational Intelligence and Neuroscience, 2018, 1–13. https://doi.org/10.1155/2018/7068349.
Wang, Y., & Kosinski, M. (2018). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 114(2), 246–257. https://doi.org/10.1037/pspa0000098.
Webb, E. J., Campbell, D. T., Schwartz, R. D., & Sechrest, L. (1966). Unobtrusive measures: Nonreactive research in the social sciences. Rand Mcnally.
Xu, X., Li, G., Xie, G., Ren, J., & Xie, X. (2019). Weakly supervised deep semantic segmentation using CNN and ELM with semantic candidate regions. Complexity, 2019, 1–12. https://doi.org/10.1155/2019/9180391.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? http://arxiv.org/abs/1411.1792
Zhang, C.-L., & Wu, J. (2019). Improving CNN linear layers with power mean non-linearity. Pattern Recognition, 89, 12–21. https://doi.org/10.1016/j.patcog.2018.12.029.
Funding
There is no funding involved in this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
We have no conflict of interest.
Ethics statement
The individuals involved in this manuscript have given written informed consent to publish these case details.
Code availability
All code and trained models used for this work can be found at: https://github.com/Bribak/DeepConnection
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Uhlich, M., Bojar, D. DeepConnection: classifying momentary relationship state from images of romantic couples. J Comput Soc Sc 4, 631–653 (2021). https://doi.org/10.1007/s42001-021-00102-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42001-021-00102-2