The rhythm of Mexico: an exploratory data analysis of Spotify’s top 50 | Journal of Computational Social Science Skip to main content
Log in

The rhythm of Mexico: an exploratory data analysis of Spotify’s top 50

  • Research Article
  • Published:
Journal of Computational Social Science Aims and scope Submit manuscript

Abstract

Spotify has emerged as an important online platform for streaming digital music. A key aspect of Spotify is that it provides access to music on-demand to a worldwide level. In this regard, Spotify via its API permits to gain access to music-related data with the aim to know information about different parameters such as: artist, album, and genre. This paper aims to: (1) give an overview of the shared features of the songs that appeared at Mexico’s top 50 during 2019, (2) analyze how these features are related to a track permanence on the top 50; and (3) compare those results with the global top 50 chart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://www.spotify.com.

  2. https://www.apple.com/apple-music/.

  3. https://www.play.google.com/music.

  4. https://www.developer.spotify.com/documentation/web-api/.

References

  1. Aljanaki, A., Yang, Y. H., & Soleymani, M. (2017). Developing a benchmark for emotional analysis of music. PLoS One 12(3). https://doi.org/10.1371/journal.pone.0173392. http://www.mturk.com.

  2. Andersen, J. S. (2014). Using the Echo Nest’s automatically extracted music features for a musicological purpose. In 4th International workshop on cognitive information processing—Proceedings of CIP 2014. https://doi.org/10.1109/CIP.2014.6844510. https://www.ieeexplore.ieee.org/abstract/document/6844510.

  3. Bachmann, F., Bass, L., Clements, P., Garlan, D., Ivers, J., Little, M., et al. (2010). Documenting software architectures: Views and beyond (2nd ed.). Boston: Addison-Wesley Professional.

    Google Scholar 

  4. Bauer, C., & Schedl, M. (2019). Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems. PLoS One,. https://doi.org/10.1371/journal.pone.0217389.

    Article  Google Scholar 

  5. Bonnin, G., & Jannach, D. (2014). Automated generation of music playlists: Survey and experiments. ACM Computing Surveys, 47(2), 26:1–26:35. https://doi.org/10.1145/2652481.

    Article  Google Scholar 

  6. Carlier, M., & Delevoye-Turrell, Y. (2017). Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for high tolerant individuals. PLoS One,. https://doi.org/10.1371/journal.pone.0170383.

    Article  Google Scholar 

  7. Carrillo Valle, Á. (2019). Evolución del Consumo de Audio en México. Technical report, The Competitive Intelligence Unit. https://www.theciu.com/publicaciones-2/2019/1/26/evolucin-del-consumo-de-audio-ott-en-mxico. Accessed 28 May 2020.

  8. Ellamil, M., Berson, J., Wong, J., Buckley, L., & Margulies, D. S. (2016). One in the dance: Musical correlates of group synchrony in a real-world club environment. PLoS One,. https://doi.org/10.1371/journal.pone.0164783.

    Article  Google Scholar 

  9. Eriksson, M. (2016). Close reading big data: The Echo Nest and the production of (rotten) music metadata by Maria Eriksson. First Monday, 21(7). https://doi.org/10.5210/fm.v21i7.6303. https://www.journals.uic.edu/ojs/index.php/fm/article/view/6303/5530.

  10. Febirautami, L. R., Surjandari, I., & Laoh, E. (2019). Determining characteristics of popular local songs in Indonesia’s music market. In Proceedings—2018 5th international conference on information science and control engineering, ICISCE 2018 (pp. 197–201). https://doi.org/10.1109/ICISCE.2018.00050. https://www.ieeexplore.ieee.org/document/8612548.

  11. Fricke, K. R., Greenberg, D. M., Rentfrow, P. J., & Herzberg, P. Y. (2018). Computer-based music feature analysis mirrors human perception and can be used to measure individual music preference. Journal of Research in Personality, 75, 94–102. https://doi.org/10.1016/j.jrp.2018.06.004.

    Article  Google Scholar 

  12. Germain, A., & Chakareski, J. (2013). Spotify me: Facebook-assisted automatic playlist generation. In 2013 IEEE international workshop on multimedia signal processing, MMSP 2013 (pp. 25–28). https://doi.org/10.1109/MMSP.2013.6659258. https://www.ieeexplore.ieee.org/document/6659258.

  13. Giannakopoulos, T. (2015). PyAudioAnalysis: An open-source python library for audio signal analysis. PLoS One, 10(12). https://doi.org/10.1371/journal.pone.0144610. https://www.github.com/tyiannak/pyAudioAnalysis/.

  14. Hall, S. E., Schubert, E., & Wilson, S. J. (2016). The role of trait and state absorption in the enjoyment of music. PLoS One, 11(11) (2016). https://doi.org/10.1371/journal.pone.0164029. http://www.arc.gov.

  15. Hern, A. Spotify acquires music data firm The Echo Nest | Technology | The Guardian. https://www.theguardian.com/technology/2014/mar/06/spotify-echo-nest-streaming-music-deal. Accessed 28 May 2020.

  16. IFPI. (2019). Music Listening 2019. Technical report, International Federation of the Phonographic Industry. https://www.ifpi.org/downloads/Music-Listening-2019.pdf. Accessed 28 May 2020.

  17. Kamehkhosh, I., Bonnin, G., & Jannach, D. (2019). Effects of recommendations on the playlist creation behavior of users. User Modeling and User-Adapted Interaction,. https://doi.org/10.1007/s11257-019-09237-4.

    Article  Google Scholar 

  18. Karydis, I., Gkiokas, A., Katsouros, V., & Iliadis, L. (2018). Musical track popularity mining dataset: Extension and experimentation. Neurocomputing, 280, 76–85. https://doi.org/10.1016/j.neucom.2017.09.100.

    Article  Google Scholar 

  19. Lambert, B., Kontonatsios, G., Mauch, M., Kokkoris, T., Jockers, M., Ananiadou, S., et al. (2020). The pace of modern culture. Nature Human Behaviour, 4(4), 352–360. https://doi.org/10.1038/s41562-019-0802-4. http://www.nature.com/articles/s41562-019-0802-4.

  20. Leroi, A. M., & Swire, J. The recovery of the past. The World of Music, 48(3), 43–54 (2006). http://www.jstor.org/stable/41699719.

  21. MacCallum, R. M., Mauch, M., Burt, A., & Leroi, A. M. (2012). Evolution of music by public choice. Proceedings of the National Academy of Sciences, 109(30), 12081–12086. https://doi.org/10.1073/pnas.1203182109.

    Article  Google Scholar 

  22. Mauch, M., MacCallum, R. M., Levy, M., & Leroi, A. M. (2015). The evolution of popular music: USA 1960–2010. Royal Society Open Science, 2(5), 150081. https://doi.org/10.1098/rsos.150081.

    Article  Google Scholar 

  23. Middlebrook, K., & Sheik, K. (2019). Song hit prediction: Predicting billboard hits using Spotify data (pp. 1–6). arxiv:1908.08609.

  24. Pichl, M., Zangerle, E., & Specht, G. (2017). Understanding playlist creation on music streaming platforms. In Proceedings—2016 IEEE international symposium on multimedia, ISM 2016 (pp. 475–480). IEEE. https://doi.org/10.1109/ISM.2016.139. http://www.ieeexplore.ieee.org/document/7823674/.

  25. Piña-García, C. A., Siqueiros-García, J. M., Robles-Belmont, E., Carreón, G., Gershenson, C., & López, J. A. D. (2018). From neuroscience to computer science: a topical approach on twitter. Journal of Computational Social Science, 1(1), 187–208. https://doi.org/10.1007/s42001-017-0002-9.

    Article  Google Scholar 

  26. Sangnark, S., Lertwatechakul, M., & Benjangkaprasert, C. (2018). Thai music emotion recognition by linear regression. ACM International Conference Proceeding Series,. https://doi.org/10.1145/3293688.3293696.

    Article  Google Scholar 

  27. Schettino, V. J., David, J. M. N., Braga, R., & Araújo, M. A. P. (2017). Spotify characterization as a sofware ecosystem. ACM International Conference Proceeding Series Part, 10(1145/3132498), 3133836.

    Google Scholar 

  28. Schwind, A., Haberzettl, L., Wamser, F., & Ho\(\backslash\)ssfeld, T. (2019). QoE analysis of spotify audio streaming and app browsing. In Proceedings of the 4th Internet-QoE workshop on QoE-based analysis and management of data communication networks, Internet-QoE’19 (pp. 25–30). New York, NY, USA: ACM. https://doi.org/10.1145/3349611.3355546.

  29. Skidén, P. (2016). API improvements and U | Spotify for developers. https://www.developer.spotify.com/community/news/2016/03/29/api-improvements-update/.

  30. Spotify. (2019). Get Audio Features for a Track | Spotify for Developers. https://www.developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/.

  31. Takano, M., Mizukami, H., Toriumi, F., Takeuchi, M., Wada, K., Yasuda, M., & Fukiida, I. (2017). Analysis of the changes in listening trends of a music streaming service. In: 2017 IEEE international conference on big data (big data) (pp. 3139–3142). https://doi.org/10.1109/BigData.2017.8258290.

  32. Taruffi, L., & Koelsch, S. (2014). The paradox of music-evoked sadness: An online survey. PLoS One, 9(10), 110490. https://doi.org/10.1371/journal.pone.0110490. http://www.plosone.org.

  33. TheEchoNest. (2015). The Echo Nest. http://www.the.echonest.com/.

  34. Yu, Y., Tang, S., Raposo, F., & Chen, L. (2019). Deep cross-modal correlation learning for audio and lyrics in music retrieval. ACM Transactions on Multimedia Computing, Communications and Applications.,. https://doi.org/10.1145/3281746.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manuel Pérez-Verdejo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Verdejo, J.M., Piña-García, C.A., Ojeda, M.M. et al. The rhythm of Mexico: an exploratory data analysis of Spotify’s top 50. J Comput Soc Sc 4, 147–161 (2021). https://doi.org/10.1007/s42001-020-00070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42001-020-00070-z

Keywords

Navigation