Controlling Chaos Using Superior Feedback Technique with Applications in Discrete Traffic Models | International Journal of Fuzzy Systems Skip to main content
Log in

Controlling Chaos Using Superior Feedback Technique with Applications in Discrete Traffic Models

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In recent years, discrete chaos has found a celebrated place in various dynamical phenomena of nature and science, such as population dynamics in ecology, laser technology, traffic flow system, image encryption and decryption in cryptography, secure communication, etc. But as a recent discipline, control of chaos an important field of research related to chaotic systems has come into play with many scientific and technological advances. In this article, a superior technique to control chaos in a class of one-dimensional discrete systems is developed and the unstable fixed and periodic states responsible for chaotic behavior are stabilized. Due to an extra degree of freedom of an intrinsic parameter \(\alpha\) in superior control technique, the stability performance increases rapidly than other techniques. Further, the several theoretical as well as numerical simulation results are studied for the efficiency and effectiveness of the superior control technique followed by theorems, examples, remarks, Lyapunov exponent property, and period-doubling bifurcation representation. Moreover, using this system following discrete traffic flow problem is also discussed, “How to impart an unstable traffic behavior into stable and non-traffic zone?”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Azevedo, A., Rezende, S.M.: Controlling chaos in spine-wave instability. Phys. Rev. Lett 66(10), 1342–1345 (1991)

    Article  Google Scholar 

  2. Baleanu, D., Wu, G.C., Bai, Y.R., Chen, F.L.: Stability analysis of Caputo like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simulat. 48, 520–530 (2017)

    Article  MathSciNet  Google Scholar 

  3. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  4. Braverman, E., Liz, E.: Global stabilization of periodic orbits using a proportional feedback control with pulses. Nonlinear Dyn. 67, 2467–2475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carmona, P., Franco, D.: Control of chaotic behaviour and prevention of extinction using constant proportional feedback. Nonlinear Anal. RWA 12, 3719–3726 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Chugh, R., Rani, M., Ashish, : Logistic map in Noor orbit. Chaos Complex. Lett. 6(3), 167–175 (2012)

    Google Scholar 

  7. Chen, Q., Gao, J.: Delay feedback control of the Lorenz-like system. Math. Probl. Eng. 2018, 1–13 (2018)

    MathSciNet  Google Scholar 

  8. De Vieira, M.Sousa, Lichtenberg, A.J.: Controlling chaos using nonlinear feedback with delay. Phys. Rev. E 54, 1200–1207 (1996)

    Article  Google Scholar 

  9. Devaney, R.L.: A First Course in Chaotic Dynamical Systems: Theory and Experiment. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  10. Disbro, J.E., Frame, M.: Traffic flow theory and chaotic behaviour. Transp. Res. Rec. 1225, 109–115 (1990)

    Google Scholar 

  11. Ditto, W.L., Rauseo, S.N., Spano, M.L.: Experimental control of chaos. Phys. Rev. Lett 65(26), 3211–3214 (1991)

    Article  Google Scholar 

  12. Franco, D., Liz, E.: A two-parameter method for chaos control and targeting in one-dimensional maps. Int. J. Bifurc. Chaos 23(1), 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garfinkel, A., Spano, M.L., Ditto, W.L., Weiss, J.N.: Controlling cardiac chaos. Science 257, 1230–1235 (1992)

    Article  Google Scholar 

  14. Grether, D., Neumann, A., Nagel, K.: Simulation of urban traffic control: a queue model approach. Procedia Comput. Sci. 10, 808–814 (2012)

    Article  Google Scholar 

  15. Holmgren, R.A.: A First Course in Discrete Dynamical Systems. Springer, New York (1994)

    Book  MATH  Google Scholar 

  16. Hunt, E.R.: Stabilizing high-period orbits in a chaotic systems: the diode resonator. Phys. Rev. Lett 67(15), 1953–1955 (1991)

    Article  Google Scholar 

  17. Jarrett, D., Xiaoyan Z.: The dynamic behaviour of road traffic flow: stability or chaos? In: Crilly, A.J., Earnshaw, R., Jones, H. (eds.) Applications of Fractals and Chaos: The Shape of Things. Springer, Berlin (1993)

    Google Scholar 

  18. Jiang, G., Zheng, W.: A simple method of chaos control for a class of chaotic discrete-time systems. Chaos Solitons Fractals 23, 843–849 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ashish, Cao, J., Chugh, R.: Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model. Nonlinear Dyn. 94(2), 959–975 (2018)

    Article  Google Scholar 

  20. Ashish, Cao, J.: A novel fixed point feedback approach studying the dynamical behaviour of standard logistic map. Int. J. Bifurc. Chaos 29(1), 1950010(2019)

    Article  MATH  Google Scholar 

  21. Liz, E.: How to control chaotic behavior and population size with proportional feedback. Phys. Lett. A 374, 725–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liz, E., Franco, D.: Global stabilization of fixed points using predictive control. Chaos 20, 0231241–9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lo, S.C., Cho, H.J.: Chaos and control of discrete dynamic traffic model. J. Franklin Inst. 342, 839–851 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mirus, K.A., Sprott, J.C.: Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. Phy. Rev. E 59(5), 5313–5324 (1999)

    Article  Google Scholar 

  26. Morgul, O.: On the stabilization time chaotic systems. Phys. Lett. A 335, 127–138 (2005)

    Article  MATH  Google Scholar 

  27. Mukherjee, M., Halderb, S.: Stabilization and control of chaos based on nonlinear dynamic Inversion. Energy Procedia 117, 731–738 (2017)

    Article  Google Scholar 

  28. Nakajima, H.: On analytical properties of delayed feedback control of chaos. Phys. Lett. A 232, 207–210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Parthasarathy, S., Sinha, S.: Controlling chaos in unidimensional maps using constant feedback. Phy. Rev. E 51, 6239–6242 (1995)

    Article  Google Scholar 

  31. Peng, B., Petrov, V., Showalter, K.: Controlling chemical chaos. J. Phys. Chem. 95, 4957–4959 (1991)

    Article  Google Scholar 

  32. Polyak, B.T.: Chaos stabilization by predictive control. Autom. Remote Control 66, 1791–1804 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. 170A, 421–428 (1992)

    Article  Google Scholar 

  34. Pyragas, K.: Delayed feedback control of chaos. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 2309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Radwan, A.G., Moaddy, K., Salama, K.N., Momani, S., Hashim, I.: Control and switching synchronization of fractional order chaotic systems using active control technique. J. Adv. Res. 05, 125–132 (2014)

    Article  Google Scholar 

  36. Sadeghian, H., Merat, K., Salarieh, H., Alasty, A.: On the fuzzy minimum entropy control to stabilize the unstable fixed points of chaotic maps. Appl. Math. Model. 35(03), 1016–1023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Salarieh, H., Alasty, A.: Chaos control in uncertain dynamical systems using nonlinear delayed feedback. Chaos Solitons Fractals 41, 67–71 (2009)

    Article  MATH  Google Scholar 

  38. Salarieh, H., Alasty, A.: Stabilizing unstable fixed points of chaotic maps via minimum entropy control. Chaos Solitons Fractals 37, 763–769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L.: Controlling chaos in brain. Nature 320, 615–620 (1994)

    Article  Google Scholar 

  40. Schuster, H.G., Stemmler, M.B.: Control of chaos by oscillating feedback. Phy. Rev. E 56, 6410–6417 (1997)

    Article  Google Scholar 

  41. Shang, P., Li, X., Kame, S.: Chaotic analysis of traffic time series. Chaos Solitons Fractals 25, 121–128 (2005)

    Article  Google Scholar 

  42. Sharkovsky, A.N., Maistrenko, Y.L., Romanenko, Y.E.: Difference Equations and Their Applications. Kluwer Academic Publisher, Dordrecht (1993)

    Book  Google Scholar 

  43. Sinha, S.: Controlling chaos in biology. Curr. Sci 73(11), 977–983 (1997)

    Google Scholar 

  44. Singer, J., Bau, H.H.: Active control of convection. Phys. Fluids 3(12), 2859–2865 (1991)

    Article  MATH  Google Scholar 

  45. Socolar, J., Sukow, D., Gauthier, D.: Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E 50, 3245–3248 (1994)

    Article  Google Scholar 

  46. Vincent, T.L.: Chaotic control system. Nonlinear Dyn. Syst. Theory 1(2), 205–218 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–286 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, G.C., Baleanu, D.: Discrete chaos in fractional delayed logistic map. Nonlinear Dyn. 80, 1697–1703 (2015)

    Article  MathSciNet  Google Scholar 

  49. Xu, M., Gao, Z.: Nonlinear analysis of road traffic flows in discrete dynamical system. J. Comput. Nonlin. Dyn. 3, 021206–6 (2008)

    Article  Google Scholar 

  50. Zhang, Y., Jarrett, D.: Stability analysis of classical car-following model. Transp. Res. B 31(6), 441–462 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by Jiangsu Postdoctoral Science Foundation under Grant No. 1701177C, Southeast University Research Grant No. 1107010199 and National Natural Science Foundation of China under Grant Nos. 61573096 and 61272530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashish, Cao, J. & Chugh, R. Controlling Chaos Using Superior Feedback Technique with Applications in Discrete Traffic Models. Int. J. Fuzzy Syst. 21, 1467–1479 (2019). https://doi.org/10.1007/s40815-019-00636-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00636-8

Keywords