A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains | Computational and Applied Mathematics Skip to main content
Log in

A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A fast finite difference method is developed for solving space-fractional diffusion equations with variable coefficient in convex domains using a volume penalization approach. The resulting coefficient matrix can be written as the discretized matrix from the extended rectangular domain plus a diagonal matrix with jumping entries due to the penalization parameter. An efficient preconditioner is constructed based on the combination of two approximate inverse circulant matrices. The preconditioned BiCGSTAB method, with the proposed preconditioner, is implemented for solving the resulting linear system. Numerical results are carried out to demonstrate the utility of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in incompressible visocous flows. Numer Math 81:491–520

    Article  Google Scholar 

  • Benson D, Wheatcraft SW, Meerschaert MM (2000) The fractional-order governing equation of Lévy motion. Water Resour Res 36:1413–1423

    Article  Google Scholar 

  • Carbou G, Fabrie P (2003) Boundary layer for a penalization method for viscous impcompressible flow. Adv Differ Equ 8:1453–1480

    Google Scholar 

  • Chan R, Ng M (2006) Conjugate gradient methods for Toeplitz systems. SIAM Rev 38:427–482

    Article  MathSciNet  Google Scholar 

  • Chan T (1988) An optimal circulant preconditioner for Toeplitz systems. SIAM J Sci Stat Comput 9:766–771

    Article  MathSciNet  Google Scholar 

  • Davis PJ (1979) Circulant matrices. Wiley-Intersciences, New York

    Google Scholar 

  • del-Castillo-Negrete D (2004) Fractional diffusion in plasma turbulence. Phys Plasmas 11:3854–3864

    Article  Google Scholar 

  • Ervin VJ, Roop JP (2007) Variational solution of fractional advection dispersion equations on bounded domains in \({R}^d\). Numer Methods Part Differ Equ 23:256–281

    Article  Google Scholar 

  • Ferziger J, Peric M (1996) Numerical methods in fluid dynamics. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Gray RM (2006) Toeplitz and circulant matrices: a review. Found Trends Commun Inf Theory 2:155–239

    Article  Google Scholar 

  • Jia J, Wang H (2016) A fast finite volume method for conservative space-fractional diffusion equations in convex domains. J Comput Phys 310:63–84

    Article  MathSciNet  Google Scholar 

  • Kolomenskiy D, van yen Nguyen R, Schneider K (2015) Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions. Appl Numer Math 95:238–249

    Article  MathSciNet  Google Scholar 

  • Kolomenskiy D, Schneider K (2009) A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles. J Comput Phys 228:5687–5709

    Article  MathSciNet  Google Scholar 

  • Li C, Ding H (2014) Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl Math Model 38:3802–3821

    Article  MathSciNet  Google Scholar 

  • Liu F, Anh V, Turner I (2004) Numerical solution of the space fractional Fokker–Planck equation. J Comput Appl Math 166:209–219

    Article  MathSciNet  Google Scholar 

  • Lynch VE, Carreras BA, del-Castillo-Negrete D, Ferreira-Mejias KM, Hicks HR (2003) Numerical methods for the solution of partial differential equations of fractional order. J Comput Phys 192:406–421

    Article  MathSciNet  Google Scholar 

  • Meerschaert MM, Scheffler HP, Tadjeran C (2006) Finite difference methods for two-dimensional fractional dispersion equation. J Comput Phys 211:249–261

    Article  MathSciNet  Google Scholar 

  • Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172:65–77

    Article  MathSciNet  Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37:R161–R208

    Article  MathSciNet  Google Scholar 

  • Ng M, Pan J (2010) Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices. SIAM J Sci Comput 32:1442–1464

    Article  MathSciNet  Google Scholar 

  • Pan J, Ke R, Ng M, Sun H (2014) Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J Sci Comput 36:A2698–A2719

    Article  MathSciNet  Google Scholar 

  • Peskin C (2012) The immersed boundary method. Acta Numer 11:479–517

    MathSciNet  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, Cambridge

    Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Rhode Island

    Book  Google Scholar 

  • Strang G (1986) A proposal for Toeplitz matrix calculations. Stud Appl Math 74:171–176

    Article  Google Scholar 

  • Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231

    Article  Google Scholar 

  • Tadjeran C, Meerschaert MM (2007) A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J Comput Phys 220:813–823

    Article  MathSciNet  Google Scholar 

  • Wang H, Basu TS (2012) A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J Sci Comput 34:A2444–A2458

    Article  MathSciNet  Google Scholar 

  • Wang H, Du N (2013) A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J Comput Phys 240:49–57

    Article  MathSciNet  Google Scholar 

  • Wang H, Wang K, Sircar T (2010) A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J Comput Phys 229:8095–8104

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported in part by the National Science Foundation under Grant DMS-1216923, the OSD/ARO MURI Grant W911NF-15-1-0562, the National Natural Science Foundation of China under Grants 11831010, 11471194, 11571115 and 11371229, Taishan research project of Shandong Province, the research grant 0118/2018/A3 from FDCT of Macao, and MYRG2018-00015-FST from University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, N., Sun, HW. & Wang, H. A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains. Comp. Appl. Math. 38, 14 (2019). https://doi.org/10.1007/s40314-019-0769-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0769-9

Keywords

Mathematics Subject Classification

Navigation