A comprehensive survey on chest diseases analysis: technique, challenges and future research directions | International Journal of Multimedia Information Retrieval Skip to main content

Advertisement

Log in

A comprehensive survey on chest diseases analysis: technique, challenges and future research directions

  • Trends and Surveys
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

Learning with chest diseases and their classification, segmentation, localization, annotation, and abnormality detection are challenging and exciting research objectives. Over the past few years, different researchers have come with various learning techniques for improving performance in chest image analysis. However, the scarcity of labeled datasets and less computational processing power was a reason for the negligible performance improvement. Nevertheless, with the advancement in Deep Learning (DL) techniques, researchers succeeded in achieving state-of-the-art results and created a new research paradigm. Among the different DL techniques, Convolutional Neural Network comes with a revolution for identifying abnormality in chest images. This survey aims to highlight the importance of deep learning techniques in chest disease diagnosis. In this paper, our primary objective is to broadly analyze different DL techniques and recognize some of the important research challenges that mostly affect deep neural networks for investigating various chest diseases. Specifically, we focus on several chest diseases, symptoms, preliminary treatments, and state-of-the-art detection techniques. We also introduce several chest image analysis tools, techniques, and datasets for analyzing chest diseases. Further, we have presented several open research challenges and future research directions in the field of chest image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://medium.com/stanford-ai-for-healthcare.

  2. Open-i: An open access biomedical search engine. https://openi.nlm.nih.gov.

  3. https://github.com/keras-team/keras.

  4. https://pytorch.org/tutorials.

  5. https://www.tensorflow.org.

  6. https://github.com/Theano/Theano.

  7. https://www.kaggle.com/nih-chest-xrays/data.

  8. https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.

References

  1. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Article  Google Scholar 

  2. LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Advances in neural information processing systems, pp 396–404

  3. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  4. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  5. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  6. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  7. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  8. Haskins G, Kruger U, Yan P (2020) Deep learning in medical image registration: a survey. Mach Vis Appl 31(1):8

    Article  Google Scholar 

  9. Altaf F, Islam SM, Akhtar N, Janjua NK (2019) Going deep in medical image analysis: concepts, methods, challenges, and future directions. IEEE Access 7:99540–99572

    Article  Google Scholar 

  10. Hwang EJ, Park S, Jin K-N, Im Kim J, Choi SY, Lee JH, Goo JM, Aum J, Yim J-J, Cohen JG et al (2019) Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2(3):e191095

    Article  Google Scholar 

  11. Jaiswal AK, Tiwari P, Kumar S, Gupta D, Khanna A, Rodrigues JJ (2019) Identifying pneumonia in chest X-rays: a deep learning approach. Measurement 145:511–518

    Article  Google Scholar 

  12. Gozes O, Frid-Adar M, Sagie N, Zhang H, Ji W, Greenspan H (2020) Coronavirus detection and analysis on chest CT with deep learning. arXiv preprint arXiv:2004.02640

  13. Ma J, Song Y, Tian X, Hua Y, Zhang R, Wu J (2019) Survey on deep learning for pulmonary medical imaging. Front Med 14:450–469

    Article  Google Scholar 

  14. Hazra A, Choudhary P, Singh MS (2021) Recent advances in deep learning techniques and its applications: an overview. In: Advances in biomedical engineering and technology, pp 103–122

  15. Farhat H, Sakr GE, Kilany R (2020) Deep learning applications in pulmonary medical imaging: recent updates and insights on covid-19. Mach Vis Appl 31(6):1–42

    Article  Google Scholar 

  16. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292

    Article  Google Scholar 

  17. Wong KK, Fortino G, Abbott D (2020) Deep learning-based cardiovascular image diagnosis: a promising challenge. Future Gener Comput Syst 110:802–811

    Article  Google Scholar 

  18. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J et al (2018) Recent advances in convolutional neural networks. Pattern Recognit 77:354–377

    Article  Google Scholar 

  19. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2):102–127

    Article  Google Scholar 

  20. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu M-L, Chen S-C, Iyengar S (2018) A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR) 51(5):1–36

    Article  Google Scholar 

  21. Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z (2018) Deep learning and its applications in biomedicine. Genomics Proteomics Bioinform 16(1):17–32

    Article  Google Scholar 

  22. Lee SM, Seo JB, Yun J, Cho Y-H, Vogel-Claussen J, Schiebler ML, Gefter WB, Van Beek EJ, Goo JM, Lee KS et al (2019) Deep learning applications in chest radiography and computed tomography. J Thorac Imaging 34(2):75–85

    Article  Google Scholar 

  23. Zhang J, Xie Y, Li Y, Shen C, Xia Y (2020) Covid-19 screening on chest X-ray images using deep learning based anomaly detection. arXiv preprint arXiv:2003.12338,

  24. Schaff F, Morgan KS, Pollock JA, Croton LCP, Hooper SB, Kitchen MJ (2020) Material decomposition using spectral propagation-based phase-contrast X-ray imaging. IEEE Trans Med Imaging 39(12):3891–3899. https://doi.org/10.1109/TMI.2020.3006815

  25. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  26. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K et al (2017) Chexnet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225

  27. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833

  28. Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 1520–1528

  29. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587

  30. Hazra A, Choudhary P, Inunganbi S, Adhikari M (2020) Bangla-Meitei Mayek scripts handwritten character recognition using convolutional neural network. Appl Intell. https://doi.org/10.1007/s10489-020-01901-2

  31. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shi Y (2020) Lung infection quantification of covid-19 in CT images with deep learning. arXiv preprint arXiv:2003.04655

  32. Ramirez CM, Abrajano MA, Alvarez RM (2019) Using machine learning to uncover hidden heterogeneities in survey data. Sci Rep 9(1):1–11

    Article  Google Scholar 

  33. Narayanan U, Unnikrishnan A, Paul V, Joseph S (2017) A survey on various supervised classification algorithms. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE, pp 2118–2124

  34. Mduma N, Kalegele K, Machuve D (2019) A survey of machine learning approaches and techniques for student dropout prediction. Data Sci J 18(1):14. https://doi.org/10.5334/dsj-2019-014

  35. Meena KS, Suriya S (2019) A survey on supervised and unsupervised learning techniques. In: International conference on artificial intelligence, smart grid and smart city applications. Springer, pp 627–644

  36. Mao HH (2020) A survey on self-supervised pre-training for sequential transfer learning in neural networks. arXiv preprint arXiv:2007.00800

  37. Van Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109(2):373–440

    Article  MathSciNet  MATH  Google Scholar 

  38. Pise NN, Kulkarni P (2008) A survey of semi-supervised learning methods. In: 2008 international conference on computational intelligence and security, vol 2. IEEE, pp 30–34

  39. Hafiz AM, Bhat GM (2020) Image classification by reinforcement learning with two-state q-learning. arXiv preprint arXiv:2007.01298

  40. Hwang EJ, Nam JG, Lim WH, Park SJ, Jeong YS, Kang JH, Hong EK, Kim TM, Goo JM, Park S et al (2019) Deep learning for chest radiograph diagnosis in the emergency department. Radiology 293(3):573–580

    Article  Google Scholar 

  41. Peng C, Li B, Liang P, Zheng J, Zhang Y, Qiu B, Chen DZ (2020) A cross-domain metal trace restoring network for reducing X-ray CT metal artifacts. IEEE Trans Med Imaging 39(12):3831–3842. https://doi.org/10.1109/TMI.2020.3005432

  42. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  43. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  44. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261

  45. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258

  46. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  47. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size. arXiv preprint arXiv:1602.07360

  48. Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516

    Article  Google Scholar 

  49. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: 2016 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 779–788

  50. Koch G, Zemel R, Salakhutdinov R (2015) Siamese neural networks for one-shot image recognition. In: ICML deep learning workshop, vol 2. Lille

  51. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

  52. Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D Vision (3DV), pp 565–571

  53. Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. Adv Neural Inf Process Syst 28:2377–2385

    Google Scholar 

  54. Ker J, Wang L, Rao J, Lim T (2017) Deep learning applications in medical image analysis. IEEE Access 6:9375–9389

    Article  Google Scholar 

  55. Mittal A, Hooda R, Sofat S (2017) Lung field segmentation in chest radiographs: a historical review, current status, and expectations from deep learning. IET Image Proc 11(11):937–952

    Article  Google Scholar 

  56. Van Ginneken B, Romeny BTH, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20(12):1228–1241

    Article  Google Scholar 

  57. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang G-Z (2016) Deep learning for health informatics. IEEE J Biomed Health Inform 21(1):4–21

    Article  Google Scholar 

  58. Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y (2018) Diagnose like a radiologist: attention guided convolutional neural network for thorax disease classification. arXiv preprint arXiv:1801.09927

  59. Demner-Fushman D, Kohli MD, Rosenman MB, Shooshan SE, Rodriguez L, Antani S, Thoma GR, McDonald CJ (2016) Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc 23(2):304–310

    Article  Google Scholar 

  60. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K-I, Matsui M, Fujita H, Kodera Y, Doi K (2000) Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol 174(1):71–74

    Article  Google Scholar 

  61. Jaeger S, Candemir S, Antani S, Wáng Y-XJ, Lu P-X, Thoma G (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475

    Google Scholar 

  62. Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA et al (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931

    Article  Google Scholar 

  63. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2097–2106

  64. Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti P-A, Müller H (2012) Building a reference multimedia database for interstitial lung diseases. Comput Med Imaging Graph 36(3):227–238

    Article  Google Scholar 

  65. Syben C, Stimpel B, Roser P, Dörfler A, Maier A (2020) Known operator learning enables constrained projection geometry conversion: parallel to cone-beam for hybrid MR/X-ray imaging. IEEE Trans Med Imaging 39(11):3488–3498. https://doi.org/10.1109/TMI.2020.2998179

  66. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M (2020) Covid-19 image data collection: prospective predictions are the future. arXiv preprint arXiv:2006.11988

  67. Singh S (2020) Pneumoxttention: a CNN compensating for human fallibility when detecting pneumonia through CXR images with attention. arXiv preprint arXiv:2008.04907

  68. Bhandary A, Prabhu GA, Rajinikanth V, Thanaraj KP, Satapathy SC, Robbins DE, Shasky C, Zhang Y-D, Tavares JMR, Raja NSM (2020) Deep-learning framework to detect lung abnormality—a study with chest X-ray and lung CT scan images. Pattern Recognit Lett 129:271–278

    Article  Google Scholar 

  69. Heo S-J, Kim Y, Yun S, Lim S-S, Kim J, Nam C-M, Park E-C, Jung I, Yoon J-H (2019) Deep learning algorithms with demographic information help to detect tuberculosis in chest radiographs in annual workers’ health examination data. Int J Environ Res Public Health 16(2):250

    Article  Google Scholar 

  70. Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A (2019) Comparison of deep learning approaches for multi-label chest X-ray classification. Sci Rep 9(1):1–10

    Article  Google Scholar 

  71. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  72. Ranzato M, Poultney C, Chopra S, Cun YL (2007) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, pp 1137–1144

  73. Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on Machine learning, pp.1096–1103

  74. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on international conference on machine learning. Omnipress, Madison, WI, pp 833–840

  75. Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: International conference on artificial neural networks. Springer, pp 52–59

  76. Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Comput 1(2):270–280

    Article  Google Scholar 

  77. Salakhutdinov R, Hinton G (2009) Deep Boltzmann machines. In: Artificial intelligence and statistics, pp 448–455

  78. Younes L (1999) On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stoch Int J Probab Stoch Process 65(3–4):177–228

    MathSciNet  MATH  Google Scholar 

  79. Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D Vision (3DV). IEEE, pp 565–571

  80. Choudhary P, Hazra A (2019) Chest disease radiography in twofold: using convolutional neural networks and transfer learning. Evolving Syst. https://doi.org/10.1007/s12530-019-09316-2

  81. Chaudhary A, Hazra A, Chaudhary P (2019) Diagnosis of chest diseases in X-ray images using deep convolutional neural network. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, pp 1–6

  82. Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Cook SA, De Marvao A, Dawes T, O’Regan DP et al (2017) Anatomically constrained neural networks (ACNNS): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384–395

    Article  Google Scholar 

  83. Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, Rokovyi O, Stirenko S (2018) Deep learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer. In: International conference on computer science, engineering and education applications. Springer, pp 638–647

  84. Luchies AC, Byram BC (2018) Deep neural networks for ultrasound beamforming. IEEE Trans Med Imaging 37(9):2010–2021

    Article  Google Scholar 

  85. Novikov AA, Lenis D, Major D, Hladvka J, Wimmer M, Bühler K (2018) Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE Trans Med Imaging 37(8):1865–1876

    Article  Google Scholar 

  86. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  Google Scholar 

  87. Gang P, Zhen W, Zeng W, Gordienko Y, Kochura Y, Alienin O, Rokovyi O, Stirenko S (2018) Dimensionality reduction in deep learning for chest X-ray analysis of lung cancer. In: 2018 tenth international conference on advanced computational intelligence (ICACI). IEEE, pp 878–883

  88. Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K (2017) Learning to diagnose from scratch by exploiting dependencies among labels. arXiv preprint arXiv:1710.10501

  89. Anavi Y, Kogan I, Gelbart E, Geva O, Greenspan H (2015) A comparative study for chest radiograph image retrieval using binary texture and deep learning classification. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2940–2943

  90. Sirinukunwattana K, Raza SEA, Tsang Y-W, Snead DR, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1196–1206

    Article  Google Scholar 

  91. Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J (2017) High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30(1):95–101

    Article  Google Scholar 

  92. Wang C, Elazab A, Wu J, Hu Q (2017) Lung nodule classification using deep feature fusion in chest radiography. Comput Med Imaging Graph 57:10–18

    Article  Google Scholar 

  93. Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, Oudkerk M, de Jong PA, Prokop M, van Ginneken B (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1):195–202

    Article  Google Scholar 

  94. Shen W, Zhou M, Yang F, Yang C, Tian J (2015) Multi-scale convolutional neural networks for lung nodule classification. In: International conference on information processing in medical imaging. Springer, pp 588–599

  95. Gao M, Bagci U, Lu L, Wu A, Buty M, Shin H-C, Roth H, Papadakis GZ, Depeursinge A, Summers RM et al (2018) Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng Imaging Vis 6(1):1–6

    Article  Google Scholar 

  96. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216

    Article  Google Scholar 

  97. Cicero M, Bilbily A, Colak E, Dowdell T, Gray B, Perampaladas K, Barfett J (2017) Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol 52(5):281–287

    Article  Google Scholar 

  98. Charbonnier J-P, Van Rikxoort EM, Setio AA, Schaefer-Prokop CM, van Ginneken B, Ciompi F (2017) Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal 36:52–60

    Article  Google Scholar 

  99. Gao M, Xu Z, Lu L, Wu A, Nogues I, Summers RM, Mollura DJ (2016) Segmentation label propagation using deep convolutional neural networks and dense conditional random field. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, pp 1265–1268

  100. Tolkachev A, Sirazitdinov I, Kholiavchenko M, Mustafaev T, Ibragimov B (2020) Deep learning for diagnosis and segmentation of pneumothorax: the results on the kaggle competition and validation against radiologists. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2020.3023476

  101. Wei R, Zhou F, Liu B, Bai X, Fu X, Li Y, Liang B, Wu Q (2019) Convolutional neural network (CNN) based three dimensional tumor localization using single X-ray projection. IEEE Access 7:37026–37038

    Article  Google Scholar 

  102. Schwab E, Gooen A, Deshpande H, Saalbach A (2020) Localization of critical findings in chest X-ray without local annotations using multi-instance learning. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp 1879–1882

  103. Ferguson M, Ak R, Lee YT, Law KH (2017) Automatic localization of casting defects with convolutional neural networks. In: 2017 IEEE international conference on big data (Big Data), pp 1726–1735

  104. CenterBerkeley (2016) Caffe. http://caffe.berkeleyvision.org/

  105. Microsoft (2016) Cntk. https://github.com/Microsoft/CNTK

  106. Skymind (2016) Deeplearning4j. http://deeplearning4j.org/

  107. Wolfram Research (2016) Wolfram math. https://www.wolfram.com/mathematica/

  108. Google (2016) Tensorflow. https://www.tensorflow.org/

  109. Universite de Montreal (2016) Theano. http://deeplearning.net/software/theano/

  110. Collobert R, Kavukcuoglu K, Farabet C (2016) Torch. http://www.torch.ch/

  111. Franois Chollet (2016) Keras

  112. Nervana Systems (2016) Neon. https://github.com/NervanaSystems/neon

  113. https://github.com/pytorch/pytorch

  114. Ge Y, Liu P, Ni Y, Chen J, Yang J, Su T, Zhang H, Guo J, Zheng H, Li Z-C, Liang D (2020) Enhancing the X-ray differential phase contrast image quality with deep learning technique. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2020.3011119

  115. Hemdan EE-D, Shouman MA, Karar ME (2020) Covidx-net: a framework of deep learning classifiers to diagnose covid-19 in X-ray images. arXiv preprint arXiv:2003.11055

  116. Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, Adhikari LM, Carter EJ, Puri L, Codlin AJ et al (2019) Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep 9(1):1–10

    Article  Google Scholar 

  117. Li X, Thrall JH, Digumarthy SR, Kalra MK, Pandharipande PV, Zhang B, Nitiwarangkul C, Singh R, Khera RD, Li Q (2019) Deep learning-enabled system for rapid pneumothorax screening on chest CT. Eur J Radiol 120:108692

    Article  Google Scholar 

  118. Rahman A, Hossain MS, Alrajeh NA, Alsolami F (2020) Adversarial examples—security threats to covid-19 deep learning systems in medical IoT devices. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.3013710

  119. Huang X, Jamonnak S, Zhao Y, Wang B, Hoai M, Yager K, Xu W (2020) Interactive visual study of multiple attributes learning model of X-ray scattering images. arXiv preprint arXiv:2009.02256

  120. Yu H, Xu X, Zhao Z, Li D (2020) Yu-net lung segment image preprocess methods used for common chest diseases prediction. In: Proceedings of the 2020 5th international conference on machine learning technologies, pp 68–71

  121. Wang S, Wang X, Shen Y, He B, Zhao X, Cheung PW, Cheung JPY, Luk KD, Hu Y (2020) An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2020.2997852

  122. Ding Y, Wu G, Chen D, Zhang N, Gong L, Cao M, Qin Z (2020) Deepedn: a deep learning-based image encryption and decryption network for internet of medical things. arXiv preprint arXiv:2004.05523

  123. Kim H, Hwang S (2016) Scale-invariant feature learning using deconvolutional neural networks for weakly-supervised semantic segmentation. arXiv preprint arXiv:1602.04984

  124. Shin H-C, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM (2016) Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2497–2506

  125. Yang W, Chen Y, Liu Y, Zhong L, Qin G, Lu Z, Feng Q, Chen W (2017) Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med Image Anal 35:421–433

    Article  Google Scholar 

  126. Lo S-C, Lou S-L, Lin J-S, Freedman MT, Chien MV, Mun SK (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14(4):711–718

    Article  Google Scholar 

  127. Bar Y, Diamant I, Wolf L, Greenspan H (2015) Deep learning with non-medical training used for chest pathology identification. In: Medical imaging 2015: computer-aided diagnosis, vol 9414. International Society for Optics and Photonics, p 94140V

  128. Anavi Y, Kogan I, Gelbart E, Geva O, Greenspan H (2016) Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval. In: Medical imaging 2016: computer-aided diagnosis, vol 9785. International Society for Optics and Photonics, p 978510

  129. Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H (2018) Chest pathology identification using deep feature selection with non-medical training. Comput Methods Biomech Biomed Eng Imaging Vis 6(3):259–263

    Article  Google Scholar 

  130. Hwang S, Kim H-E, Jeong J, Kim H-J (2016) A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Medical imaging 2016: computer-aided diagnosis, vol 9785. International Society for Optics and Photonics, p 97852W

  131. Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MMW, Naqibullah M, Sánchez CI, van Ginneken B (2016) Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35(5):1160–1169

    Article  Google Scholar 

  132. Shen W, Zhou M, Yang F, Dong D, Yang C, Zang Y, Tian J (2016) Learning from experts: developing transferable deep features for patient-level lung cancer prediction. in: international conference on medical image computing and computer-assisted intervention. Springer, pp 124–131

  133. Sun W, Zheng B, Qian W (2016) Computer aided lung cancer diagnosis with deep learning algorithms. In: Medical imaging 2016: computer-aided diagnosis, vol 9785. International Society for Optics and Photonics, p 97850Z

  134. Teramoto A, Fujita H, Yamamuro O, Tamaki T (2016) Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43(6Part1):2821–2827

    Article  Google Scholar 

  135. Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S (2016) Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE J Biomed Health Inform 21(1):76–84

    Article  Google Scholar 

  136. Van Ginneken B, Setio AA, Jacobs C, Ciompi F (2015) Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: IEEE 12th International symposium on biomedical imaging (ISBI). IEEE, pp 286–289

  137. Chen S, Qin J, Ji X, Lei B, Wang T, Ni D, Cheng J-Z (2016) Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images. IEEE Trans Med Imaging 36(3):802–814

    Article  Google Scholar 

  138. Luo L, Yu L, Chen H, Liu Q, Wang X, Xu J, Heng P-A (2020) Deep mining external imperfect data for chest X-ray disease screening. arXiv preprint arXiv:2006.03796

  139. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org

  140. Mehdipoor G, Salmani F, Shabestari AA (2017) Survey of practitioners” competency for diagnosis of acute diseases manifest on chest X-ray. BMC Med Imaging 17(1):1–6

    Article  Google Scholar 

  141. Pérez SR, Marshall NW, Binst J, Coolen J, Struelens L, Bosmans H (2020) Survey of chest radiography systems: any link between contrast detail measurements and visual grading analysis? Phys Med 76:62–71

    Article  Google Scholar 

  142. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114

  143. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

  144. Bank D, Koenigstein N, Giryes R (2020) Autoencoders

Download references

Acknowledgements

We appreciate the time and efforts made by the editor and reviewers while reviewing this manuscript. Further, the authors would like to thank Prof. Prakash Choudhary (NIT Hamirpur) for his continuous suggestion to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Hazra.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The abbreviations used in this article are listed in Table 11.

Table 11 Nomenclature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, A. A comprehensive survey on chest diseases analysis: technique, challenges and future research directions. Int J Multimed Info Retr 10, 83–110 (2021). https://doi.org/10.1007/s13735-021-00205-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-021-00205-6

Keywords

Navigation