Continuous state online influence maximization in social network | Social Network Analysis and Mining Skip to main content
Log in

Continuous state online influence maximization in social network

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. http://www.arXiv.org.

  2. http://www.informatik.uni-trier.de/ley/db/.

  3. Continuous states online influence maximization.

  4. Online influence maximization.

  5. Random.

References

  • Ahmed S, Ezeife C (2013) Discovering influential nodes from trust network. In: Proceedings of the 28th ACM symposium on applied computing (ACMSAC), pp 121–128

  • Aslay C, Barbieri N, Bonchi F, Baeza-Yates R (2014) Online topic-aware influence maximization queries. In: EDBT

  • Borgs C, Bratbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: SODA

  • Chen Y, Krause A (2013) Near-optimal batch mode active learning and adaptive submodular optimization. In: Proceedings of the 30th international conference on machine learning, Atlanta, Georgia, USA

  • Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: KDD

  • Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD

  • Chen S, Fan J, Li G, Feng J, Tan K-L, Tang J (2015) Online topic-aware influence maximization. In: PVLDB

  • Cohen E, Delling D, Pajor T, Werneck RF (2014) Sketch-based influence maximization and computation: scaling up with guarantees. In: ACM

  • Domingos P, Richardson M (2001) Mining the network values of customers. In: Proceedings of KDD

  • Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: WSDM

  • Goyal A, Lu W, Lakshmanan LVS (2011) CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW

  • https://en.wikipedia.org/wiki/Social_network_analysis#In_computersupported_collaborative_learning. Accessed 24 July 2017

  • https://en.wikipedia.org/wiki/Markov_random_field. Accessed 24 July 2017

  • https://en.wikipedia.org/wiki/Beta_distribution. Accessed 24 July 2017

  • Jung K, Heo W, Chen W (2011) IRIE: a scalable influence maximization algorithm for independent cascade model and its extensions, pp 1–20. CoRR arXiv preprint arXiv:1111.4795

  • Kempe D, Kleinberg JM, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDD

  • Kim C, Lee S, Park S, Lee S (2013a) Influence maximization algorithm using markov clustering. In: DASFAA

  • Kim J, Kim S-K, Yu H (2013b) Scalable and parallelizable processing of influence maximization for large-scale social networks? In: ICDE

  • Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 93:046110

    Article  Google Scholar 

  • Lei S, Maniu S, Mo L, Cheng R, Senellart P (2015) Online influence maximization. In: ACM

  • Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance NS (2007) Cost-effective outbreak detection in networks. In: KDD

  • Leung T, Chung FL (2014) Persuasion driven influence propagation in social networks. In: ASONAM

  • Li W, Tan K, Feng J, Chen S, Li G (2014) Efficient location-aware influence maximization. In: SIGMOD

  • Li Y, Zhang D, Tan K-L (2015) Real-time targeted influence maximization for online advertisements. In: PVLDB

  • Lin SC, Lin SD, Chen MS (2015) A learning-based framework to handle multi-round multi-party influence maximization on social networks. In: KDD

  • Liu Q, Xiang B, Chen E, Xiong H, Tang F, Yu JX (2014) Influence maximization over large-scale social networks: a bounded linear approach. In: CIKM

  • Lovett MJ, Peres R, Shachar R (2013) On brands and word of mouth. J Mark Res 50(4):427

    Article  Google Scholar 

  • MohammadiBaghmolaei R, Mozafari N, Hamzeh A (2015) Trust based latency aware influence maximization in social networks. Eng Appl Artif Intell 41:195–206

    Article  Google Scholar 

  • MohammadiBaghmolaei R, Mozafari N, Hamzeh A (2017) Continuous states latency aware influence maximization in social networks. In: AI Communications

  • Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD

  • Saito K, Nakano R, Kimura M (2008) Prediction of information diffusion probabilities for independent cascade model. In: KES

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  • Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: ACM SIGMOD

  • Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: SIGMOD

  • Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516

    Article  Google Scholar 

  • Zhu F, Tang F, Liu Q, Zhu H, Chen E (2014) diversified social influence maximization. In: ASONAM

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hamzeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, N., Mozafari, N. & Hamzeh, A. Continuous state online influence maximization in social network. Soc. Netw. Anal. Min. 8, 32 (2018). https://doi.org/10.1007/s13278-018-0510-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-018-0510-5

Keywords