Abstract
Digital recruitment is increasingly becoming a popular avenue for identifying human subjects for various studies. The process starts with an online ad that describes the task and explains expectations. As social media has exploded in popularity, efforts are being made to use social media advertisement for various recruitment purposes. There are, however, many unanswered questions about how best to do that. In this paper, we present an innovative Twitter recruitment system for a smoking cessation nicotine patch study. The goals of the paper are to: (1) present the approach we have taken to solve the problem of digital recruitment; (2) provide the system specification and design of a rule-based system; (3) present the algorithms and data mining approaches (classification and association analysis) using Twitter data; and (4) present the promising outcome of the initial version of the system and summarize the results. This is the first effort to introduce a practical solution for digital recruitment campaigns that is large-scale, inexpensive, efficient and reaches out to individuals in near real-time as their needs are expressed. A continuous update on how our system is performing, in real-time, can be viewed at https://twitter.com/TobaccoQuit.
Similar content being viewed by others
Notes
Real time update: https://bitly.com/ZDMaA7+/global.
More information on this system can be found at Twitter @GeomedSci and https://redcap.uvm.edu/redcap/surveys/index.php?s=AgCWxtoyMX.
References
Agrawal R, Srikant R (1994) In: Proceedings of the 20th International Conference on very large data bases morgan kaufmann publishers Inc., San Francisco, VLDB ’94, pp 487–499. http://dl.acm.org/citation.cfm?id=645920.672836
Aiello A, Burattini E, Tamburrini G (1995) Int J Intell Syst 10(8), 735. doi:10.1002/int.4550100804
B Incorporation (2013) Url shortening and bookmarking services. http://bitly.com/
Breiman L (2001) Mach. Learn. 45(1), 5. doi:10.1023/A:1010933404324
Bioportal N (2009) Gazetteer Ontol. http://bioportal.bioontology.org/ontologies/GAZ
Black A, Mascaro C, Gallagher M, Goggins SP (2012) In: Proceedings of the 17th ACM International Conference on Supporting Group Work, ACM, New York, GROUP ’12, pp 229–238. doi:10.1145/2389176.2389211
Chang Y, Dong A, Kolari P, Zhang R, Inagaki Y, Diaz F, Zha H, Liu Y (2013) ACM Trans. Intell. Syst. Technol. 4(1), 4:1. doi:10.1145/2414425.2414429
Chen GM (2011) Comput. Hum. Behav. 27(2), 755. doi:10.1016/j.chb.2010.10.023
Cheong M, Lee VC (2011) Information Systems Frontiers 13(1), 45. doi:10.1007/s10796-010-9273-x
CareerBuilder (1995) http://www.careerbuilder.com
Craigslist (1995) http://www.craigslist.com
Eleta I (2012) In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work Companion, ACM, New York, CSCW ’12, pp 363–366. doi:10.1145/2141512.2141621
Fortunato S, Boguñá M, Flammini A, Menczer F (2005) CoRR abs/cs/0511016.
Fortunato S, Boguñá M, Flammini A, Menczer F (2007) Internet Math 4(2):245
Fung FCY (1989) Knowledge-Based Systems 2(4), 228. doi:10.1016/0950-7051(89)90067-1. http://www.sciencedirect.com/science/article/pii/0950705189900671
Ganjisaffar Y (2012) Open source web crawler for java. http://code.google.com/p/crawler4j/
Gayo-Avello D (2013) Soc. Sci. Comput. Rev. 31(6), 649. doi:10.1177/0894439313493979
Ghiassi M, Skinner J, Zimbra D (2013) Expert Syst. Appl. 40(16), 6266. doi:10.1016/j.eswa.2013.05.057
Google (1995) http://www.google.com
Gupta N, Das A, Pandey S, Narayanan VK (2012) In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, KDD ’12, pp 1204–1212. doi:10.1145/2339530.2339719
Hamed AA, Wu X (2014) In: Big Data, 2014 IEEE International Conference on (2014)
Hill EF (2003) Jess in action: Java rule-based systems. Manning Publications Co., Greenwich
Hughes JR (2013) J Subst Abuse Treat 45(2), 215. doi:10.1016/j.jsat.2013.01.011. http://www.sciencedirect.com/science/article/pii/S0740547213000342
Hughes JR (2013) Nicotine Tobacco Res 15(2):588. doi:10.1093/ntr/nts154
Huang J, Thornton KM, Efthimiadis EN (2010) In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, ACM, New York, HT ’10, pp 173–178. doi:10.1145/1810617.1810647
Lee DC, Budney AJ, Brunette MF, Hughes JR, Etter JF, Stanger C (2014) Addict Behav 39(8), 1224. doi:10.1016/j.addbeh.2014.04.010. http://www.sciencedirect.com/science/article/pii/S0306460314001129
Lhotska L, Marik V, Vlcek T (2001) Int J Med Inf 63(1–2), 61. doi:10.1016/S1386-5056(01)00172-1. http://www.sciencedirect.com/science/article/pii/S1386505601001721
LinkedIn (2003) http://www.linkedin.com
Kim M, Park HW (2012) Scientometrics 90(1), 121. doi:10.1007/s11192-011-0508-5
Meng X, Wei F, Liu, X Zhou M, Li S, Wang H(2012) In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, KDD ’12, pp 379–387. doi:10.1145/2339530.2339592
Monster (1999). http://www.monster.com
N.L. of Medicine (2013) Medical subject headings browser. http://www.nlm.nih.gov/mesh/2014/mesh_browser/MBrowser.html
Pavlyshenko B (2013) CoRR abs/1310.3499. http://dblp.uni-trier.de/db/journals/corr/corr1310.html
Pring C (2012) 99 new social media stats for 2012. http://thesocialskinny.com/99-new-social-media-stats-for-2012/
Ravikumar S, Talamadupula K, Balakrishnan R, Kambhampati S (2013) In: AAAI (Late-Breaking Developments), AAAI Workshops, vol. WS-13-17 (AAAI, 2013), AAAI Workshops, vol WS-13-17. http://dblp.uni-trier.de/db/conf/aaai/late2013.html
Stringhini G, Wang G, Egele M, Kruegel C, Vigna G, Zheng H, Zhao BY (2013) In: Proceedings of the 2013 Conference on Internet Measurement Conference, ACM, New York, IMC ’13, pp 163–176. doi:10.1145/2504730.2504731
Tsakonas A, Dounias G, Jantzen J, Axer H, Bjerregaard B, von Keyserlingk DG (2004) Artificial Intell Med 32(3), 195. doi:10.1016/j.artmed.2004.02.007. Adaptive Systems and Hybrid Computational Intelligence in Medicine. http://www.sciencedirect.com/science/article/pii/S0933365704001058
Twitter.com (2006) The twitter rest api. https://dev.twitter.com/docs/api
Uzuner O, Goldstein I, Luo Y, Kohane I (2008) J Am Med Inf Assoc 15(1), 14. doi:10.1197/jamia.M2408. http://jamia.bmj.com/content/15/1/14.short
Wang CC, Chien MN, Huang CH, Liu L, (2007) in Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on, vol 4, vol 4, pp 109–115. doi:10.1109/FSKD.2007.117
Yamamoto Y (2007) Java library for the twitter api. http://www.twitter4j.org/
Yan X, Han J (2002) In: Proceedings of the 2002 IEEE International Conference on Data Mining, IEEE Computer Society, Washington DC, ICDM ’02, pp 721. http://dl.acm.org/citation.cfm?id=844380.844811
Yang X, Ghoting A, Ruan Y, Parthasarathy S (2012) In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, KDD ’12, pp 370–378. doi:10.1145/2339530.2339591
Yang M, Lee JT, Lee SW, Rim HC (2012) In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, SIGIR ’12, pp 1073–1074. doi:10.1145/2348283.2348475
Yu K, Ding W, Simovici DA, Wu X(2012) In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, KDD ’12, pp 60–68. doi:10.1145/2339530.2339544
Yamaguchi Y, Takahashi T, Amagasa T, Kitagawa H (2010) In: Proceedings of the 11th international conference on Web information systems engineering, Springer, Berlin, WISE’10, pp 240–253. http://dl.acm.org/citation.cfm?id=1991336.1991364
Wu X, Kumar V (2009) The top ten algorithms in data mining, 1st edn. Chapman & Hall, London
Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou ZH, Steinbach M, Hand DJ, Steinberg D (2007) Knowl Inf Syst 14(1), 1. doi:10.1007/s10115-007-0114-2
Zhang B, Wang J, Zhang L (2013) In: ICDCS Workshops (IEEE, 2013), pp 190–195. http://dblp.uni-trier.de/db/conf/icdcsw/icdcsw2013.html
Acknowledgments
This work is partly funded by National Institute of Health (NIH) Grant: 1 R01 CA165080 and Vermont EPSCoR award number EPS-1101713. We also thank the HPBL team for populating our database of tweets. Special thanks to the Twitter4J project lead, Yusuke Yamamoto, and all contributors. Authors also thank Dr. Benjamin Littenberg for offering another case study to demonstrate the strength and flexibility of the system.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hamed, A.A., Wu, X. & Rubin, A. A twitter recruitment intelligent system: association rule mining for smoking cessation. Soc. Netw. Anal. Min. 4, 212 (2014). https://doi.org/10.1007/s13278-014-0212-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13278-014-0212-6