Abstract
Multi-sensor analysis is a novel scientific approach in remote sensing science. The basic idea is to enable users to combine various satellite mission data (called scenes) into a common data set. This combination produces millions of high-resolution time series (one time series for each pixel) from which users want to extract potentially interesting spatio-temporal patterns. A challenge of multi-sensor analysis is that users often experience difficulties interpreting the extracted patterns. We use Visual Analytics (VA) to help users understand these patterns. We learned from our interdisciplinary cooperation in the GeoMultiSens project that VA has to support the assessment and selection of scenes suitable for the current application scenario and question to achieve this goal. The contribution of this paper is twofold. First, we describe how we devised a VA approach that supports users in the assessment and selection of remote sensing data based on a user and task analysis. We demonstrate how our VA approach helps users to select and assess scenes to study forest cover change in Europe between 2010 and 2016. The study of forest cover change is an important scientific scenario because the loss of forest cover has negative effects on the environment, such as undermining the capacity of ecosystems to maintain fresh water, loosing the ability to regulate the climate, and poorer air quality. Second, we discuss the Scientific Data Explorer, our research vision for VA to enable users to effectively develop VA approaches for a variety of scientific scenarios.
Similar content being viewed by others
References
Albertz J, Wiggenhagen M (2009) Guide for Photogrammetry and Remote Sensing. Wichmann, Heidelberg
Andrienko G, Andrienko N, Voss H (2003) GIS for Everyone: The CommonGIS Project and Beyond. In: Peterson M (eds) Maps, Internet. Elsevier Science, Amsterdam, pp 131–146
Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data: a systematic approach. Springer, New York. doi:10.1007/3-540-31190-4
Andrienko N, Andrienko G, Voss H, Bernardo F, Hipolito J, Kretchmer U (2002) Testing the Usability of Interactive Maps in CommonGIS. Cartogr Geogr Inf Sci 29(4):325–342. doi:10.1559/152304002782008369
Community AF (2016) Project website. https://flink.apache.org. Accessed 27-June-2016
Becker RA, Cleveland WS (1987) Brushing Scatterplots. Technometrics 29(2):127–142. doi:10.2307/1269768
Buja A, McDonald JA, Michalak J, Stuetzle W (1991) Interactive data visualization using focusing and linking. In: Proceedings of the Second Conference on Visualization 1991 Visualization ’91. IEEE Computer Society Press, Los Alamitos, pp 156–163
Butkiewicz T, Dou W, Warteil Z, Ribarsky W, Chang R (2008) Multi-Focused Geospatial Analysis Using Probes. IEEE Trans Vis Comput Graph 14(6):1165–1172. doi:10.1109/TVCG.2008.149
Butler DM, Pendley MH (1989) A Visualization Model Based on the Mathematics of Fiber Bundles. Comput Phys 3(5):45. doi:10.1063/1.168345
Dykes J (1998) Cartographic Visualization. J Royal Stat Soc Ser D (The Statistician) 47(3):485–497. doi:10.1111/1467-9884.00149
Dykes J, Maceachren AM, Kraak MJ (eds) (2005) Exploring geovisualization. Elsevier Ltd, Amsterdam. doi:10.1016/b978-008044531-1/50419-x
Eggert D, Sips M, Köthur P (2016) Towards Visual Analytics for Multi-Sensor Analysis of Remote Sensing Archives. In: Rink K, Middel A, Zeckzer D (eds) Workshop on Visualisation in Environmental Sciences (EnvirVis). The Eurographics Association, Geneve
ESA (2016) Scientific Data Hub. https://scihub.copernicus.eu/. Accessed 27-June-2016
Evans E (2003) Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, Upper Saddle River
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Abstraction and Reuse of Object-Oriented Design. Addison-Wesley, Reading. doi:10.1007/3-540-47910-4_21
GeoMultiSens (2016) Project website. http://www.geomultisens.gfz-potsdam.de. Accessed 27-June-2016
Google (2016) Earth engine. https://code.earthengine.google.com/. Accessed 27-June-2016
Guo D, Chen J, MacEachren AM, Liao K (2006) A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP). IEEE Trans Vis Comput Graph 12(6):1461–1474. doi:10.1109/TVCG.2006.84
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342(6160):850–853. doi:10.1126/science.1244693. (http://science.sciencemag.org/content/342/6160/850)
Hardisty F, Robinson AC (2011) The GeoViz Toolkit: Using Component-Oriented Coordination Methods for Geographic Visualization and Analysis. Int J Geogr Inf Sci 25(2):191–210. doi:10.1080/13658810903214203
Hartigan J (1975) Printer Graphics for Clustering. J Stat Comput Simul 4(3):187–213. doi:10.1080/00949657508810123
Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the First IEEE Conference on Visualization 1990 Visualization ’90. IEEE Computer Society Press, Los Alamitos, pp 361–378
Jern M, Johansson S, Johansson J, Franzen J (2007) The GAV toolkit for multiple linked views. In: Proceedings – Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization CMV 2007. IEEE Computer Society Press, Los Alamitos, pp 85–97
Keim D, Kohlhammer J, Mansmann F, Georey E (2010) Mastering the Information Age Solving Problems with Visual Analytics. Eurographics Association (http://diglib.eg.org/handle/10.2312/14803)
KNIME.com (2016) KNIME. https://www.knime.org. Accessed 27-June-2016
Leontyev AN (1978) Activity, Consciousness, and Personality. Prentice-Hall, Upper Saddle River
Liu P (2015) A Survey of Remote-Sensing Big Data. Front Environ Sci. doi:10.3389/fenvs.2015.00045
MacEachren AM (2004) How Maps Work: Representation, Visualization and Design. Guilford Press, New York. doi:10.1080/18756891.2010.9727707
Nardi BA (1996) Activity Theory and Human-Computer Interaction. In: Context and consciousness: Activity theory and human-computer interaction. MIT Press, Cambridge and London, pp 7–16
Rapid Miner (2016) Rapid Miner. https://rapidminer.com. Accessed 27-June-2016
Sedlmair M, Meyer M, Munzner T (2012) Design Study Methodology: Reflections from the Trenches and the Stacks. IEEE Trans Vis Comput Graph 18(12):2431–2440. doi:10.1109/TVCG.2012.213
Shneiderman B (1994) Dynamic Queries for Visual Information Seeking. IEEE Softw 11(6):70–77. doi:10.1109/52.329404
Takatsuka M, Gahegan M (2002) GeoVISTA Studio: A Codeless Visual Programming Environment for Geoscientific Data Analysis and Visualization. Comput Geosci 28(10):1131–1144. doi:10.1016/S0098-3004(02)00031-6
Thomas JJ, Cook KA (2005) Illuminating the path: The research and development agenda for visual analytics. IEEE Computer Society Press, Los Alamitos (http://vis.pnnl.gov/pdf/RD_Agenda_VisualAnalytics.pdf)
Tukey JW (1977) Exploratory Data Analysis. Addison Wesley, Reading. doi:10.2307/2529486
Weaver C (2004) Building highly-coordinated visualizations in Improvise. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis). IEEE Computer Society Press, Los Alamitos, pp 159–166
Weaver C (2016) Improvise. http://www.cs.ou.edu/~weaver/improvise/. Accessed 06-September-2016
Wilson TD (2006) A Re-Examination of Information Seeking Behaviour in the Context of Activity Theory. Inf Res 11(4)
Zuse Institute Berlin (2016) XtreemFS. http://www.xtreemfs.org. Accessed 27-June-2016
Acknowledgements
We want to thank our partners in the GeoMultiSens consortium for fruitful discussions and suggestions. In addition, we thank the anonymous reviewer for their helpful comments. This research is funded by the German Federal Ministry of Education and Research (BMBF project GeoMultiSens, 01IS14010A).
Author information
Authors and Affiliations
Corresponding author
Additional information
This is an extended version of the short paper: “Towards Visual Analytics for Multi-Sensor Analysis of Remote Sensing Archives” [12] selected for presentation at the Workshop on Visualisation in Environmental Sciences (EnvirVis), 2016
Rights and permissions
About this article
Cite this article
Sips, M., Köthur, P. & Eggert, D. Toward a Visual Analytics Approach to Support Multi-Sensor Analysis in Remote Sensing Science. Datenbank Spektrum 16, 219–225 (2016). https://doi.org/10.1007/s13222-016-0232-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13222-016-0232-7