Toward a Visual Analytics Approach to Support Multi-Sensor Analysis in Remote Sensing Science | Datenbank-Spektrum Skip to main content

Advertisement

Log in

Toward a Visual Analytics Approach to Support Multi-Sensor Analysis in Remote Sensing Science

  • Schwerpunktbeitrag
  • Published:
Datenbank-Spektrum Aims and scope Submit manuscript

Abstract

Multi-sensor analysis is a novel scientific approach in remote sensing science. The basic idea is to enable users to combine various satellite mission data (called scenes) into a common data set. This combination produces millions of high-resolution time series (one time series for each pixel) from which users want to extract potentially interesting spatio-temporal patterns. A challenge of multi-sensor analysis is that users often experience difficulties interpreting the extracted patterns. We use Visual Analytics (VA) to help users understand these patterns. We learned from our interdisciplinary cooperation in the GeoMultiSens project that VA has to support the assessment and selection of scenes suitable for the current application scenario and question to achieve this goal. The contribution of this paper is twofold. First, we describe how we devised a VA approach that supports users in the assessment and selection of remote sensing data based on a user and task analysis. We demonstrate how our VA approach helps users to select and assess scenes to study forest cover change in Europe between 2010 and 2016. The study of forest cover change is an important scientific scenario because the loss of forest cover has negative effects on the environment, such as undermining the capacity of ecosystems to maintain fresh water, loosing the ability to regulate the climate, and poorer air quality. Second, we discuss the Scientific Data Explorer, our research vision for VA to enable users to effectively develop VA approaches for a variety of scientific scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albertz J, Wiggenhagen M (2009) Guide for Photogrammetry and Remote Sensing. Wichmann, Heidelberg

    Google Scholar 

  2. Andrienko G, Andrienko N, Voss H (2003) GIS for Everyone: The CommonGIS Project and Beyond. In: Peterson M (eds) Maps, Internet. Elsevier Science, Amsterdam, pp 131–146

    Chapter  Google Scholar 

  3. Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data: a systematic approach. Springer, New York. doi:10.1007/3-540-31190-4

    MATH  Google Scholar 

  4. Andrienko N, Andrienko G, Voss H, Bernardo F, Hipolito J, Kretchmer U (2002) Testing the Usability of Interactive Maps in CommonGIS. Cartogr Geogr Inf Sci 29(4):325–342. doi:10.1559/152304002782008369

    Article  Google Scholar 

  5. Community AF (2016) Project website. https://flink.apache.org. Accessed 27-June-2016

    Google Scholar 

  6. Becker RA, Cleveland WS (1987) Brushing Scatterplots. Technometrics 29(2):127–142. doi:10.2307/1269768

    Article  MathSciNet  Google Scholar 

  7. Buja A, McDonald JA, Michalak J, Stuetzle W (1991) Interactive data visualization using focusing and linking. In: Proceedings of the Second Conference on Visualization 1991 Visualization ’91. IEEE Computer Society Press, Los Alamitos, pp 156–163

    Google Scholar 

  8. Butkiewicz T, Dou W, Warteil Z, Ribarsky W, Chang R (2008) Multi-Focused Geospatial Analysis Using Probes. IEEE Trans Vis Comput Graph 14(6):1165–1172. doi:10.1109/TVCG.2008.149

    Article  Google Scholar 

  9. Butler DM, Pendley MH (1989) A Visualization Model Based on the Mathematics of Fiber Bundles. Comput Phys 3(5):45. doi:10.1063/1.168345

    Article  Google Scholar 

  10. Dykes J (1998) Cartographic Visualization. J Royal Stat Soc Ser D (The Statistician) 47(3):485–497. doi:10.1111/1467-9884.00149

    Article  Google Scholar 

  11. Dykes J, Maceachren AM, Kraak MJ (eds) (2005) Exploring geovisualization. Elsevier Ltd, Amsterdam. doi:10.1016/b978-008044531-1/50419-x

    Google Scholar 

  12. Eggert D, Sips M, Köthur P (2016) Towards Visual Analytics for Multi-Sensor Analysis of Remote Sensing Archives. In: Rink K, Middel A, Zeckzer D (eds) Workshop on Visualisation in Environmental Sciences (EnvirVis). The Eurographics Association, Geneve

    Google Scholar 

  13. ESA (2016) Scientific Data Hub. https://scihub.copernicus.eu/. Accessed 27-June-2016

    Google Scholar 

  14. Evans E (2003) Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, Upper Saddle River

    Google Scholar 

  15. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Abstraction and Reuse of Object-Oriented Design. Addison-Wesley, Reading. doi:10.1007/3-540-47910-4_21

    MATH  Google Scholar 

  16. GeoMultiSens (2016) Project website. http://www.geomultisens.gfz-potsdam.de. Accessed 27-June-2016

    Google Scholar 

  17. Google (2016) Earth engine. https://code.earthengine.google.com/. Accessed 27-June-2016

    Google Scholar 

  18. Guo D, Chen J, MacEachren AM, Liao K (2006) A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP). IEEE Trans Vis Comput Graph 12(6):1461–1474. doi:10.1109/TVCG.2006.84

    Article  Google Scholar 

  19. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342(6160):850–853. doi:10.1126/science.1244693. (http://science.sciencemag.org/content/342/6160/850)

    Article  Google Scholar 

  20. Hardisty F, Robinson AC (2011) The GeoViz Toolkit: Using Component-Oriented Coordination Methods for Geographic Visualization and Analysis. Int J Geogr Inf Sci 25(2):191–210. doi:10.1080/13658810903214203

    Article  Google Scholar 

  21. Hartigan J (1975) Printer Graphics for Clustering. J Stat Comput Simul 4(3):187–213. doi:10.1080/00949657508810123

    Article  MATH  Google Scholar 

  22. Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the First IEEE Conference on Visualization 1990 Visualization ’90. IEEE Computer Society Press, Los Alamitos, pp 361–378

    Google Scholar 

  23. Jern M, Johansson S, Johansson J, Franzen J (2007) The GAV toolkit for multiple linked views. In: Proceedings – Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization CMV 2007. IEEE Computer Society Press, Los Alamitos, pp 85–97

    Chapter  Google Scholar 

  24. Keim D, Kohlhammer J, Mansmann F, Georey E (2010) Mastering the Information Age Solving Problems with Visual Analytics. Eurographics Association (http://diglib.eg.org/handle/10.2312/14803)

  25. KNIME.com (2016) KNIME. https://www.knime.org. Accessed 27-June-2016

    Google Scholar 

  26. Leontyev AN (1978) Activity, Consciousness, and Personality. Prentice-Hall, Upper Saddle River

    Google Scholar 

  27. Liu P (2015) A Survey of Remote-Sensing Big Data. Front Environ Sci. doi:10.3389/fenvs.2015.00045

    Google Scholar 

  28. MacEachren AM (2004) How Maps Work: Representation, Visualization and Design. Guilford Press, New York. doi:10.1080/18756891.2010.9727707

    Google Scholar 

  29. Nardi BA (1996) Activity Theory and Human-Computer Interaction. In: Context and consciousness: Activity theory and human-computer interaction. MIT Press, Cambridge and London, pp 7–16

    Google Scholar 

  30. Rapid Miner (2016) Rapid Miner. https://rapidminer.com. Accessed 27-June-2016

    Google Scholar 

  31. Sedlmair M, Meyer M, Munzner T (2012) Design Study Methodology: Reflections from the Trenches and the Stacks. IEEE Trans Vis Comput Graph 18(12):2431–2440. doi:10.1109/TVCG.2012.213

    Article  Google Scholar 

  32. Shneiderman B (1994) Dynamic Queries for Visual Information Seeking. IEEE Softw 11(6):70–77. doi:10.1109/52.329404

    Article  Google Scholar 

  33. Takatsuka M, Gahegan M (2002) GeoVISTA Studio: A Codeless Visual Programming Environment for Geoscientific Data Analysis and Visualization. Comput Geosci 28(10):1131–1144. doi:10.1016/S0098-3004(02)00031-6

    Article  Google Scholar 

  34. Thomas JJ, Cook KA (2005) Illuminating the path: The research and development agenda for visual analytics. IEEE Computer Society Press, Los Alamitos (http://vis.pnnl.gov/pdf/RD_Agenda_VisualAnalytics.pdf)

    Google Scholar 

  35. Tukey JW (1977) Exploratory Data Analysis. Addison Wesley, Reading. doi:10.2307/2529486

    MATH  Google Scholar 

  36. Weaver C (2004) Building highly-coordinated visualizations in Improvise. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis). IEEE Computer Society Press, Los Alamitos, pp 159–166

    Chapter  Google Scholar 

  37. Weaver C (2016) Improvise. http://www.cs.ou.edu/~weaver/improvise/. Accessed 06-September-2016

    Google Scholar 

  38. Wilson TD (2006) A Re-Examination of Information Seeking Behaviour in the Context of Activity Theory. Inf Res 11(4)

  39. Zuse Institute Berlin (2016) XtreemFS. http://www.xtreemfs.org. Accessed 27-June-2016

    Google Scholar 

Download references

Acknowledgements

We want to thank our partners in the GeoMultiSens consortium for fruitful discussions and suggestions. In addition, we thank the anonymous reviewer for their helpful comments. This research is funded by the German Federal Ministry of Education and Research (BMBF project GeoMultiSens, 01IS14010A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Sips.

Additional information

This is an extended version of the short paper: “Towards Visual Analytics for Multi-Sensor Analysis of Remote Sensing Archives” [12] selected for presentation at the Workshop on Visualisation in Environmental Sciences (EnvirVis), 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sips, M., Köthur, P. & Eggert, D. Toward a Visual Analytics Approach to Support Multi-Sensor Analysis in Remote Sensing Science. Datenbank Spektrum 16, 219–225 (2016). https://doi.org/10.1007/s13222-016-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-016-0232-7

Keywords

Navigation