Bayesian inference for Maxwell Boltzmann distribution on step-stress partially accelerated life test under progressive type-II censoring with binomial removals | International Journal of System Assurance Engineering and Management Skip to main content

Advertisement

Log in

Bayesian inference for Maxwell Boltzmann distribution on step-stress partially accelerated life test under progressive type-II censoring with binomial removals

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This article deals with the estimation problem in step-stress partially accelerated life test of Maxwell Boltzmann distribution in presence of progressive type-II censoring with binomial removals. The maximum likelihood and Bayes estimators of the parameter are obtained under symmetric and asymmetric loss functions. Furthermore, the performances of the obtained estimators are compared in terms of risks. The proposed methodology is illustrated through the time to failure (in days) of Aluminium reduction cells and survival times (in weeks) for male rats that were exposed to a high level of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aarset MV (1987) How to identify a bathtub hazard rate. IEEE Trans Reliab 36(1):106–108

    MATH  Google Scholar 

  • Abd-Elfattah A, Hassan AS, Nassr S (2008) Estimation in step-stress partially accelerated life tests for the Burr type-XII distribution using type-I censoring. Stat Method 5(6):502–514

    MathSciNet  MATH  Google Scholar 

  • Abdel-Ghani M (2004) The estimation problem of the Log Logistic parameters in step partially accelerated life tests using type-I censored data. Natl Rev Social Sci 41(2):1–19

    Google Scholar 

  • Abushal TA, Soliman AA (2015) Estimating the Pareto parameters under progressive censoring data for constant-partially accelerated life tests. J Stat Comput Simul 85(5):917–934

    MathSciNet  MATH  Google Scholar 

  • Akaike H (1978) A Bayesian analysis of the minimum AIC procedure. Ann Inst Stat Math 30(1):9–14

    MathSciNet  MATH  Google Scholar 

  • Bai D, Chung S (1992) Optimal design of partially accelerated life tests for the Exponential distribution under type-I censoring. IEEE Trans Reliab 41(3):400–406

    MATH  Google Scholar 

  • Balakrishnan N (2007) Progressive censoring methodology: an appraisal. TEST 16(2):211–259

    MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. Springer

    MATH  Google Scholar 

  • Balakrishnan N, Sandhu RA (1995) A simple simulational algorithm for generating progressive type-II censored samples. Am Stat 49(2):229–230

    Google Scholar 

  • Bhattacharyya G, Soejoeti Z (1989) A tampered failure rate model for step-stress accelerated life test. Commun Stat Theory Methods 18(5):1627–1643

    MathSciNet  MATH  Google Scholar 

  • Box GE, Tiao GC (2011) Bayesian inference in statistical analysis, vol 40. Wiley

    MATH  Google Scholar 

  • Brooks S (1998) Markov chain monte carlo method and its application. J R Stat Soc Ser D 47(1):69–100

    Google Scholar 

  • Calabria R, Pulcini G (1990) On the maximum likelihood and least-squares estimation in the inverse Weibull distributions. Stat Appl 2(1):53–66

    Google Scholar 

  • Chaudhary S, Tomer SK (2018) Estimation of stress-strength reliability for Maxwell distribution under progressive type-II censoring scheme. Int J Syst Assur Eng Manag 9(5):1107–1119

    Google Scholar 

  • Cohen AC (1963) Progressively censored samples in life testing. Technometrics 5(3):327–339

    MathSciNet  MATH  Google Scholar 

  • DeGroot MH, Goel PK (1979) Bayesian estimation and optimal designs in partially accelerated life testing. Naval Res Log Quarterly 26(2):223–235

    MathSciNet  MATH  Google Scholar 

  • Dey S, Maiti SS (2010) Bayesian estimation of the parameter of Maxwell distribution under different loss functions. J Stat Theory Pract 4(2):279–287

    MathSciNet  MATH  Google Scholar 

  • Engelhardt M, Bain LJ (1977) Uniformly most powerful unbiased tests on the scale parameter of a Gamma distribution with a nuisance shape parameter. Technometrics 19(1):77–81

    MATH  Google Scholar 

  • Furth J, Upton AC, Kimball AW (1959) Late pathologic effects of atomic detonation and their pathogenesis. Radiat Res Suppl 1:243–264

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. Chapman and Hall/CRC

    MATH  Google Scholar 

  • Gibbons JD, Chakraborti S (2020) Nonparametric statistical inference, 6th edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Ismail AA (2012) Inference in the generalized Exponential distribution under partially accelerated tests with progressive type-II censoring. Theoret Appl Fract Mech 59(1):49–56

    MathSciNet  Google Scholar 

  • Jain M, Iyengar S, Jain R (2003) Numerical methods for scientific and engineering computation. New Age International Publishers, New Delhi

    MATH  Google Scholar 

  • Kamps U, Cramer E (2001) On distributions of generalized order statistics. Statistics 35(3):269–280

    MathSciNet  MATH  Google Scholar 

  • Kumar D, Singh U, Singh SK, Bhattacharyya G (2015) Bayesian estimation of Exponentiated Gamma parameter for progressive type-II censored data with Binomial removals. J Stat Appl Prob 4(2):265–273

    Google Scholar 

  • Kumar M, Maurya SK, Singh SK, Singh U, Pathak A (2020) Model suitability analysis of survival time to overian cancer patients data. J Stat Appl Prob 9(3):609–620

    Google Scholar 

  • Kumar M, Pathak A, Soni S (2019) Bayesian inference for Rayleigh distribution under step-stress partially accelerated test with progressive type-II censoring with Binomial removal. Ann Data Sci 6(1):117–152

    Google Scholar 

  • Kumar M, Singh SK, Singh U (2018) Bayesian inference for poisson-inverse exponential distribution under progressive type-II censoring with binomial removal. Int J Syst Assur Eng Manag 9(6):1235–1249

    Google Scholar 

  • Lawless JF (2011) Statistical models and methods for lifetime data, vol 362. Wiley

    MATH  Google Scholar 

  • Maxwell JC (1860) V, Illustrations of the dynamical theory of gases- part I: on the motions and collisions of perfectly elastic spheres. London, Edinburgh Dublin Philosophical Mag J Sci 19(124):19–32

    Google Scholar 

  • Nelson WB (2009) Accelerated testing: statistical models, test plans, and data analysis, vol 344. Wiley

    Google Scholar 

  • Pathak A, Kumar M, Singh SK, Singh U (2020) Assessing the effect of E-bayesian inference for poisson inverse exponential distribution parameters under different loss functions and its application. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2020.1847293

    Article  Google Scholar 

  • Pathak A, Kumar M, Singh SK, Singh U (2020b) Bayesian inference: Weibull poisson model for censored data using the expectation-maximization algorithm and its application to bladder cancer data. J Appl Stat 10(1080/02664763):1845626

    MATH  Google Scholar 

  • Pathak A, Kumar M, Singh SK, Singh U (2021) Statistical inferences: Based on exponentiated exponential model to assess novel corona virus (covid-19) kerala patient data. Ann Data Sci. https://doi.org/10.1007/s40745-021-00348-7

    Article  Google Scholar 

  • Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    MathSciNet  MATH  Google Scholar 

  • Singh S, Singh U, Kumar M, Vishwakarma P (2014) Classical and Bayesian inference for an extension of the Exponential distribution under progressive type-II censored data with Binomial removals. J Stat Appl Prob Lett 1(3):75–86

    Google Scholar 

  • Singh SK, Singh U, Kumar M (2013) Estimation of parameters of Generalized Inverted Exponential distribution for progressive type-II censored sample with Binomial removals. J Prob Stat 2013:1–12

    MathSciNet  MATH  Google Scholar 

  • Singh SK, Singh U, Kumar M (2016) Bayesian estimation for Poisson-Exponential model under progressive type-II censoring data with Binomial removal and its application to ovarian cancer data. Commun Stat Simul Comput 45(9):3457–3475

    MathSciNet  MATH  Google Scholar 

  • Singh SK, Singh U, Sharma VK (2013) Expected total test time and Bayesian estimation for generalized Lindley distribution under progressively type-II censored sample where removals follow the Beta-Binomial probability law. Appl Math Comput 222:402–419

    MathSciNet  MATH  Google Scholar 

  • Tomer SK, Panwar M (2015) Estimation procedures for Maxwell distribution under type-I progressive hybrid censoring scheme. J Stat Comput Simul 85(2):339–356

    MathSciNet  MATH  Google Scholar 

  • Varian HR (1975) A Bayesian approach to real estate assessment. Amsterdam: North Holland Publishing Co, 36(1):195–208

  • Whitmore G (1983) A regression method for censored inverse-Gaussian data. Canadian J Stat 11(4):305–315

    MathSciNet  MATH  Google Scholar 

  • Wu SJ, Chang CT (2002) Parameter estimations based on Exponential progressive type II censored data with Binomial removals. Int J Inf Manag Sci 13(3):37–46

    MathSciNet  MATH  Google Scholar 

  • Xiong C, Ji M (2004) Analysis of grouped and censored data from step-stress life test. IEEE Trans Reliab 53(1):22–28

    Google Scholar 

  • Zellner A (1986) Bayesian estimation and prediction using asymmetric loss functions. J Am Stat Assoc 81(394):446–451

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank editors and referees for there constructive comments and suggestions which improved and enriched the presentation of the paper.

Funding

We would like to confirm that we did not have any funding organization/institute/university that funded our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflict of interest

The corresponding author declares that no conflict of interest emerged among the authors and all co-authors are equally contributed.

Ethical approval

This article does not contain any studies with human participants and animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proposition 1

The second partial derivatives of the log-likelihood function are calculated as follows:

$$\begin{aligned} \xi _{\theta _1}=-\frac{3}{2\theta }\sum _{i=1}^{n_{1}} \frac{ R_{i}\{ \Gamma (\frac{x_{i}^2}{\theta },\frac{5}{2})-\Gamma (\frac{x_{i}^2}{\theta },\frac{3}{2}) \} }{1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{x_{i}^2}{\theta },\frac{3}{2})}, \end{aligned}$$

and

$$\begin{aligned} \xi _{\theta _2}=-\frac{3}{2\theta }\sum _{n_{1}+1}^{m}\frac{R_{i}\{ \Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{5}{2})-\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}) \} }{1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2})}. \end{aligned}$$

Proof

We have,

$$ \begin{aligned} \xi _{{\theta _{1} }} = & \frac{\partial }{{\partial \theta }}\left\{ {\sum\limits_{{i = 1}}^{{n_{1} }} {R_{i} } \ln \left( {1 - \frac{1}{{\Gamma (\frac{3}{2})}}\Gamma \left( {\frac{{x_{i}^{2} }}{\theta }\frac{3}{2}} \right)} \right)} \right\} \\ = & - \sum\limits_{{i = 1}}^{{n_{i} }} {\frac{{R_{i} \{ \frac{\partial }{{\partial \theta }}\Gamma (\frac{{x_{i}^{2} }}{\theta },\frac{3}{2})\} }}{{1 - \frac{1}{{\Gamma (\frac{3}{2})}}\Gamma (\frac{{x_{i}^{2} }}{\theta },\frac{3}{2})}}} \\ \end{aligned} $$
(36)

Let \(I=\frac{\partial }{\partial \theta }\left( \Gamma (\frac{x_{i}^2}{\theta },\frac{3}{2}) \right) \), we have \(\Gamma (x,a)=\frac{1}{\Gamma (a)}\int _{0}^{x}e^{-w}w^{a-1}dw\), is an incomplete gamma ratio, so that

$$\begin{aligned} I_{1}=\frac{\partial }{\partial \theta }\int _{0}^{x_{i}^2/\theta }e^{-w}w^{a-1}dw \end{aligned}$$
(37)

After putting \(w=\frac{v^2}{\theta }\), \(dw=(\frac{2v}{\theta })dv\), at \(w=0\) and \(w=\frac{x_{i}^2}{\theta }\), \(v=x\), above Eq. 37 becomes

$$ \begin{aligned} I_{1} = & \frac{\partial }{{\partial \theta }}\int_{0}^{x} {e^{{ - \frac{{v^{2} }}{\theta }}} } \left( {\frac{{v^{2} }}{\theta }} \right)^{{\frac{3}{2} - 1}} dv = \int_{0}^{x} 2 v^{2} \frac{\partial }{{\partial \theta }}\left( {\frac{{e^{{ - \frac{{x^{2} }}{\theta }}} }}{{\theta ^{{3/2}} }}} \right) \\ I_{1} = & \frac{\partial }{{\partial \theta }}\int_{0}^{x} {e^{{ - \frac{{v^{2} }}{\theta }}} } \left( {\frac{{v^{2} }}{\theta }} \right)^{{\frac{3}{2} - 1}} dv = \int_{0}^{x} 2 v^{2} \frac{\partial }{{\partial \theta }}\left( {\frac{{e^{{ - \frac{{x^{2} }}{\theta }}} }}{{\theta ^{{3/2}} }}} \right) \\ = & \int_{0}^{x} 2 v^{2} \left( {\frac{{v^{2} e^{{ - \frac{{v^{2} }}{\theta }}} (1/\theta ^{{1/2}} ) - (3/2)\theta ^{{1/2}} e^{{ - \frac{{v^{2} }}{\theta }}} }}{{\theta ^{3} }}} \right)dv \\ = & \int_{0}^{x} {\left( {\frac{{2v^{4} e^{{ - \frac{{v^{2} }}{\theta }}} }}{{\theta ^{{7/2}} }} - \frac{{3v^{2} e^{{ - \frac{{v^{2} }}{\theta }}} }}{{\theta ^{{5/2}} }}} \right)} dv \\ \end{aligned} $$
(38)

On putting the \(t=\frac{v^2}{\theta }\), \(dt=\frac{2v}{\theta }dv\) at \(v=0,~ t=0\) and \(vx,~ t=\frac{x^2}{\theta } \), Eq. 38 becomes

$$\begin{aligned} I_{1}=\int _{0}^{x^2/\theta } \left( \frac{ 2t^{3/2} e^{-t}}{\theta } - \frac{3t^{1/2} e^{-t}}{2\theta } \right) dt = \frac{1}{\theta }\left[ \Gamma \left( \frac{5}{2}\right) \Gamma \left( \frac{x^2}{\theta }, \frac{5}{2}\right) - \frac{3}{2}\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{x^2}{\theta }, \frac{3}{2}\right) \right] \end{aligned}$$
(39)

On putting the value from Eqs. 39 into 36, we get

$$\begin{aligned} \xi _{\theta _1}=-\frac{3}{2\theta }\sum _{i=1}^{n_{1}} \frac{ R_{i}\{ \Gamma (\frac{x_{i}^2}{\theta },\frac{5}{2})-\Gamma (\frac{x_{i}^2}{\theta },\frac{3}{2}) \} }{(1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{x_{i}^2}{\theta },\frac{3}{2}))}. \end{aligned}$$

Again differentiate above equation

$$ \begin{gathered} \xi ^{\prime}_{{\theta _{1} }} = \frac{\partial }{{\partial \theta }}(\xi _{{\theta _{1} }} ) = - \frac{\partial }{{\partial \theta }}\left\{ {\frac{3}{{2\theta }}\sum\limits_{{i = 1}}^{{n_{1} }} {\frac{{R_{i} \{ \Gamma (\frac{{x_{i}^{2} }}{\theta },\frac{5}{2}) - \Gamma (\frac{{x_{i}^{2} }}{\theta },\frac{3}{2})\} }}{{(1 - \frac{1}{{\Gamma (\frac{3}{2})}}\Gamma (\frac{{x_{i}^{2} }}{\theta },\frac{3}{2}))}}} } \right\} \hfill \\ = - \frac{3}{2}\frac{\partial }{{\partial \theta }}\left\{ {\sum\limits_{{i = 1}}^{{n_{1} }} {\frac{{R_{i} I_{2} }}{{I_{3} }}} } \right\} = \frac{3}{2}\left\{ {\sum\limits_{{i = 1}}^{{n_{1} }} {\frac{{R_{i} (I_{3} (\partial I_{2} /\partial \theta ) - I_{2} (\partial I_{3} /\partial \theta ))}}{{(I_{3} )^{2} }}} } \right\} \hfill \\ \end{gathered} $$

where, \(I_{2}=\frac{1}{\theta } \left\{ \Gamma (\frac{x_{i}^2}{\theta },\frac{5}{2})-\Gamma (\frac{x_{i}^2}{\theta },\frac{3}{2}) \right\} \) and \(I_{3}= \left\{ 1- \Gamma (\frac{x_{i}^2}{\theta },\frac{3}{2}) \right\} \); \(i=1,2,\cdots ,n_{1}\).

Similarly, we can obtain the expression for \(\xi _{\theta _2}\) given below

$$\begin{aligned} \xi _{\theta _2}=-\frac{3}{2\theta }\sum _{i=n_{1}+1}^{m}\frac{R_{i} \{ \Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{5}{2})-\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}) \} }{(1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}))}. \end{aligned}$$

and also, we can obtain the expression for \(\xi '_{\theta _2}\). \(\square \)

Proposition 2

$$\begin{aligned} \xi _{\beta } = -\frac{2}{\pi \theta }\sum _{n_{1}+1}^{m}\frac{R_{i} \{ \left( \frac{2(\varphi (\beta ))^2}{\theta ^{1/2}}\right) e^{-\frac{(\varphi (\beta ))^2}{\theta }}(x_{i}-\tau ) \} }{\left( 1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2})\right) }. \end{aligned}$$

Proof

$$ \begin{aligned} \xi _{\beta } = & \frac{\partial }{{\partial \beta }}\left\{ {\sum\limits_{{i = n_{1} + 1}}^{m} {R_{i} } \log \left( {1 - \frac{1}{{\Gamma (\frac{3}{2})}}\Gamma \left( {\frac{{(\varphi (\beta ))^{2} }}{\theta },\frac{3}{2}} \right)} \right)} \right\} \\ = & - \frac{{\sum\limits_{{i = n_{1} + 1}}^{m} {R_{i} } \{ \frac{\partial }{{\partial \beta }}\Gamma (\frac{{(\varphi (\beta ))^{2} }}{\theta },\frac{3}{2})\} }}{{1 - \frac{1}{{\Gamma (\frac{3}{2})}}\Gamma (\frac{{(\varphi (\beta ))^{2} }}{\theta },\frac{3}{2})}} \\ \end{aligned} $$

We know that \(\Gamma (x,a)=\int _{0}^{x}t^{a-1}e^{-t}dt\) and differentiating with respect x i.e. \(\frac{\partial }{\partial x}\Gamma (x,a)=x^{a-1}e^{-x}\). Now

$$ \begin{gathered} \frac{\partial }{{\partial \beta }}\Gamma \left( {\frac{{(\varphi (\beta ))^{2} }}{\theta },\frac{3}{2}} \right) = \frac{\partial }{{\partial ((\varphi (\beta ))^{2} /\theta )}}\Gamma \left( {\frac{{(\varphi (\beta ))^{2} }}{\theta },\frac{3}{2}} \right) \hfill \\ \frac{{\partial ((\varphi (\beta ))^{2} /\theta )}}{{\partial \beta }} = \left( {\frac{{(\varphi (\beta ))^{2} }}{\theta }} \right)^{{\frac{3}{2} - 1}} e^{{ - \frac{{(\varphi (\beta ))^{2} }}{\theta }}} \frac{{\partial ((\varphi (\beta ))^{2} /\theta )}}{{\partial \beta }} \hfill \\ = \left( {\frac{{(\varphi (\beta ))^{2} }}{\theta }} \right)^{{\frac{1}{2}}} e^{{ - \frac{{(\varphi (\beta ))^{2} }}{\theta }}} \frac{{2(\varphi (\beta ))(x_{i} - \tau )}}{\theta } \hfill \\ = \left( {\frac{{2(\varphi (\beta ))^{2} }}{{\theta ^{{3/2}} }}} \right)e^{{ - \frac{{(\varphi (\beta ))^{2} }}{\theta }}} (x_{i} - \tau ). \hfill \\ \end{gathered} $$

We get,

$$\begin{aligned} \xi _{\beta } = -\frac{2}{\pi \theta }\sum _{n_{1}+1}^{m}\frac{R_{i} \{ \left( \frac{2(\varphi (\beta ))^2}{\theta ^{1/2}}\right) e^{-\frac{(\varphi (\beta ))^2}{\theta }}(x_{i}-\tau ) \} }{\left( 1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2})\right) }. \end{aligned}$$

Again differentiate above equation w. r. t. \(\beta \) and \(\theta \) i.e.

$$ \begin{gathered} \frac{{\partial ^{2} }}{{\partial \beta ^{2} }}\Gamma \left( {\frac{{(\varphi (\beta ))^{2} }}{\theta },\frac{3}{2}} \right) = \left( {\frac{{2(\varphi (\beta ))(x_{i} - \tau )}}{{\theta ^{{5/2}} }}} \right) \hfill \\ e^{{ - \frac{{(\varphi (\beta ))^{2} }}{\theta }}} \left\{ {2\theta (x_{i} - \tau ) + \varphi (\beta )} \right\}\frac{{\partial ^{2} }}{{\partial \beta \partial \theta }} \hfill \\ \Gamma \left( {\frac{{(\varphi (\beta ))^{2} }}{\theta },\frac{3}{2}} \right) = - \left( {\frac{{(\varphi (\beta ))^{2} (x_{i} - \tau )}}{{\theta ^{{5/2}} }}} \right) \hfill \\ e^{{ - \frac{{(\varphi (\beta ))^{2} }}{\theta }}} \left\{ {2\theta ^{{1/2}} (\varphi (\beta ))^{2} + 3} \right\} \hfill \\ \end{gathered} $$

respectively, and we obtain the second derivative given below,

$$\begin{aligned} \xi '_{\beta }=\sum _{n_{1}+1}^{m}\frac{R_{i}\left( \left( -\frac{1}{\Gamma (3/2)}\frac{\partial }{\partial \beta }\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) \left( -\frac{1}{\Gamma (3/2)}\frac{\partial }{\partial \beta }\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) -\left( 1-\frac{1}{\Gamma (3/2)}\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) \left( -\frac{1}{\Gamma (3/2)}\frac{\partial ^2}{\partial \beta ^2}\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) \right) }{\left( 1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2})\right) ^2}. \end{aligned}$$

and using the above differentials to obtain given below

$$\begin{aligned} \xi '_{\beta \theta }=\sum _{n_{1}+1}^{m}\frac{R_{i}\left( \left( -\frac{1}{\Gamma (3/2)}\frac{\partial }{\partial \beta }\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) \left( -\frac{1}{\Gamma (3/2)}\frac{\partial }{\partial \theta }\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) -\left( 1-\frac{1}{\Gamma (3/2)}\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) \left( -\frac{1}{\Gamma (3/2)}\frac{\partial ^2}{\partial \beta \partial \theta }\Gamma \left( \frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2}\right) \right) \right) }{\left( 1-\frac{1}{\Gamma (\frac{3}{2})}\Gamma (\frac{(\varphi (\beta ))^2}{\theta },\frac{3}{2})\right) ^2}. \end{aligned}$$

respectively. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A., Kumar, M., Singh, S.K. et al. Bayesian inference for Maxwell Boltzmann distribution on step-stress partially accelerated life test under progressive type-II censoring with binomial removals. Int J Syst Assur Eng Manag 13, 1976–2010 (2022). https://doi.org/10.1007/s13198-021-01612-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01612-y

Keywords

Navigation