Multi-attribute dependent bug severity and fix time prediction modeling | International Journal of System Assurance Engineering and Management Skip to main content
Log in

Multi-attribute dependent bug severity and fix time prediction modeling

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A software bug is characterized by many features/attributes out of which some are entered during the time of bug reporting whereas others are entered during the bug fixing. Severity is an important bug attribute and critical factor in deciding how soon it needs to be fixed. During the initial period of bug reporting, its severity changes and get stabilizes over a period of time. Severity identification is a major task of triagers, whose success affects the bug fix time. The prediction of bug fix time will help in estimating the maintenance efforts and better software project management. We investigated the association among the bug attributes and built multi-attribute based classification and regression models for bug severity and fix time prediction. Bug severity and fix time prediction models have been built using the combinations of different independent bug attributes. We have used different classification and regression techniques, namely Support Vector Machine (SVM), Naïve Bayes (NB), k-Nearest Neighbors (k-NN), Ordinal Regression (OR), Fuzzy Linear Regression (FLR), Fuzzy Multi Linear Regression (FMLR), Multiple Linear Regression (MLR), Support Vector Regression (SVR) and k-Nearest Neighbors Regression (k-NNR) to build the models. Our models are tested on the real world datasets from famous open source project: Mozilla. k-NN gives better performance than NB and SVM in terms of precision and f-measure for bug severity prediction. In terms of goodness of fit, SVR is better than MLR and k-NNR for bug fix time prediction. The proposed mechanism is able to predict severity and fix time for newly reported bugs. Empirical results reveal that the multi-attribute based classification and regression models work well for bug severity and fix time prediction. The two newly derived attributes Summary weight and Bug age are found to be good predictors of severity across all the used techniques. In case of bug fix time prediction, Bug age is found to be a good predictor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelmoez W, Kholief M, Elsalmy FM (2012) Bug fix time prediction model using naıve bayes classifier. In: 2012 22nd international conference on computer theory and applications (ICCTA). IEEE, pp 167–172

  • Akbarinasaji S, Caglayan B, Bener A (2018) Predicting bug-fixing time: a replication study using an open source software project. J Syst Softw 136:173–186

    Article  Google Scholar 

  • Anbalagan P, Vouk M (2009) On predicting the time taken to correct bug reports in open source projects. In: IEEE international conference on software maintenance, 2009. ICSM 2009. IEEE, pp 523–526

  • Bhattacharya P, Neamtiu I (2011) Bug-fix time prediction models: can we do better? In: Proceedings of the 8th working conference on mining software repositories. ACM, pp 207–210

  • Chaturvedi K, Singh V (2012) An empirical comparison of machine learning techniques in predicting the bug severity of open and closed source projects. Int J Open Source Softw Process (IJOSSP) 4(2):32–59

    Article  Google Scholar 

  • Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd international workshop on recommendation systems for software engineering. ACM, pp 52–56

  • Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predicting which bugs get fixed: an empirical study of microsoft windows. In: 2010 ACM/IEEE 32nd international conference on software engineering, vol 1. IEEE, pp 495–504

  • Habayeb M, Murtaza SS, Miranskyy A, Bener AB (2017) On the use of hidden markov model to predict the time to fix bugs. IEEE Trans Softw Eng 44(12):1224–1244

    Article  Google Scholar 

  • Herraiz I, German DM, Gonzalez-Barahona JM, Robles G (2008) Towards a simplification of the bug report form in Eclipse. In: MSR’08: Proceedings of the 2008 international working conference on mining software repositories. ACM, pp 145–148

  • Jin K, Dashbalbar A, Yang G, Lee JW, Lee B (2016) Bug severity prediction by classifying normal bugs with text and meta-field information. Adv Sci Technol Lett 129:19–24

    Article  Google Scholar 

  • Kim S, Whitehead Jr EJ (2006) How long did it take to fix bugs? In: Proceedings of the 2006 international workshop on mining software repositories. ACM, pp 173–174

  • Lamkanfi A, Demeyer S, Giger E, Goethals B (2010) Predicting the severity of a reported bug. In: 2010 7th IEEE working conference on mining software repositories (MSR 2010). IEEE, pp 1–10

  • Lamkanfi A, Demeter S, Soetens QD, Verdonck T (2011) Comparing mining algorithms for predicting the severity of a reported bug. In: 15th European conference on software maintenance and reengineering (CSMR). IEEE, pp 249–258

  • Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In: IEEE International conference on software maintenance, 2008. ICSM 2008. IEEE, pp 346–355

  • Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T (2006) Yale: rapid prototyping for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 935–940

  • Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: apache and mozilla. ACM Trans Softw Eng Methodol (TOSEM) 11(3):309–346

    Article  Google Scholar 

  • Murphy-Hill E, Zimmermann T, Bird C, Nagappan N (2013) The design of bug fixes. In: 2013 35th international conference on software engineering (ICSE). IEEE, pp 332–341

  • Myers L, Sirois MJ (2014) Spearman correlation coefficients, differences between. In: Balakrishnan N, Colton T, Everitt B, Piegorsch WW, Ruggeri F, Teugels JL (eds) Wiley StatsRef: statistics reference online. Wiley, New York

    Google Scholar 

  • Nguyen TT, Nguyen AT, Nguyen TN (2014) Topic-based, time-aware bug assignment. ACM SIGSOFT Softw Eng Notes 39:1–4

    Article  Google Scholar 

  • Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137

    Article  Google Scholar 

  • Saha RK, Lawall J, Khurshid S, Perry DE (2015) Are these bugs really normal? In: Proceedings of the 12th working conference on mining software repositories. IEEE Press, pp 258–268

  • Sharma M, Kumari M, Singh V (2013) Understanding the meaning of bug attributes and prediction models. In: Proceedings of the 5th IBM collaborative academia research exchange workshop. ACM, p 15

  • Sharma M, Kumari M, Singh VB (2015) The way ahead for bug-fix time prediction. In 3rd international workshop on quantitative approaches to software quality, p 33

  • Singh VB, Misra S, Sharma M (2017) Bug severity in cross project context and identifying training candidates. J Inf Knowl Manag 16(1):1750005. https://doi.org/10.1142/s0219649217500058

    Article  Google Scholar 

  • Tian Y, Lo D, Sun C (2012) Information retrieval based nearest neighbor classification for fine-grained bug severity prediction. In: 2012 19th working conference on reverse engineering. IEEE, pp 215–224

  • Tian Y, Ali N, Lo D, Hassan AE (2016) On the unreliability of bug severity data. Empir Softw Eng 21(6):2298–2323

    Article  Google Scholar 

  • UCLA A (2007) Introduction to sas. UCLA: Academic Technology Services, Statistical Consulting Group. http://www.ats.ucla.edu/stat/sas/notes2/. Accessed 24, Nov 2007

  • Weiss C, Premraj R, Zimmermann T, Zeller A (2007) How long will it take to fix this bug? In: Proceeding of the working conference on mining software repositories (MSR ‘07). IEEE Computer Society, Washington, DC, USA, pp 1–8

  • Xia X, Lo D, Shihab E, Wang X, Yang X (2015) Elblocker: predicting blocking bugs with ensemble imbalance learning. Inf Softw Technol 61:93–106

    Article  Google Scholar 

  • Yang G, Zhang T, Lee B (2014) Towards semi-automatic bug triage and severity prediction based on topic model and multi-feature of bug reports. In: 2014 IEEE 38th annual computer software and applications conference (COMPSAC). IEEE, pp 97–106

  • Yu Y, Wang H, Yin G, Wang T (2016) Reviewer recommendation for pull-requests in GitHub: what can we learn from code review and bug assignment? Inf Softw Technol 74:204–218

    Article  Google Scholar 

  • Zhang H, Gong L, Versteeg S (2013) Predicting bug-fixing time: an empirical study of commercial software projects. In: Proceedings of the 2013 international conference on software engineering. IEEE Press, pp 1042–1051

  • Zhang T, Yang G, Lee B, Chan AT (2015) Predicting severity of bug report by mining bug repository with concept profile. In: Proceedings of the 30th annual ACM symposium on applied computing. ACM, pp 1553–1558

  • Zhang T, Chen J, Yang G, Lee B, Luo X (2016a) Towards more accurate severity prediction and fixer recommendation of software bugs. J Syst Softw 117:166–184

    Article  Google Scholar 

  • Zhang T, Yang G, Lee B, Chan AT (2016b) Guiding bug triage through developer analysis in bug reports. Int J Softw Eng Knowl Eng 26(03):405–431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 11, 12, 13 and 14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Kumari, M. & Singh, V.B. Multi-attribute dependent bug severity and fix time prediction modeling. Int J Syst Assur Eng Manag 10, 1328–1352 (2019). https://doi.org/10.1007/s13198-019-00888-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-019-00888-5

Keywords

Navigation