On system reliability approaches: a brief survey | International Journal of System Assurance Engineering and Management
Skip to main content

On system reliability approaches: a brief survey

  • Tutorial Paper
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In the modern scenario, reliability has becomes the most challenging and demanding theory. The theory and the methods of reliability analysis have been developed significantly during the last 40 years and have also been acknowledged in a number of publications. So, a reliability engineer is aware about the importance of each reliability measure of the system and its fields. In this research work, a survey of reliability approaches in various fields of engineering and physical sciences is carried out. In this survey, the author tried to provide the major areas i.e. past, current and future trends of reliability methods and applications for the readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis Of Variance

ASIC:

Application Specific Integrated Circuit

BN:

Bayesian Network

CBM:

Condition Based Maintenance

CM:

Corrective Maintenance

CRS:

Central Relay Stations

CTBN:

Continuous Time Bayesian Network

DDBMS:

Distributed Data Base Management System

DOE:

Design Of Experiment

DTA:

Distribution Task Assignment

EEPROM:

Electrically Erasable Programmable Read-Only Memory

ERNN:

Extended Recurrent Neural Network

FFI:

Failure Finding Inspection

FLC:

Fault Level Coverage

FMEA:

Failure Mode And Effect Analysis

FRW:

Free Replacement Warranty

LSI:

Large Scale Integration

MCS:

Multistate Coherent System

MES:

Micro Earth Station

MIMD:

Multiple Instruction Multiple Data

MTBF:

Mean Time To Between Failure

MTTF:

Mean Time To Failure

MTTR:

Mean Time To Repair

MVUE:

Minimum Variance Unbiased Estimator

PCB:

Printed Circuit Board

PLP:

Power Law Process

PM:

Preventive Maintenance

PRA:

Probabilistic Risk Assessment

PRW:

Pro Rata Warranty

QRA:

Quantitative Risk Assessment

RDD:

Random Discrete Dopant

RPN:

Risk Priority Number

RRS:

Remote Relay Stations

SLE:

Substitution Logic Expression

SMS:

Short Message Service

SOMA:

Self-Organizing Migrating Algorithm

SOP:

System On Package

SSRP:

Solution Space Reduction Procedure

TBGA:

Tape Ball Grid

TMR:

Triple-Mode Redundancy

UGFM:

Universal Generating Function Method

References

  • Abouammoh AM, Al- Kadi MA (1991) On measures of importance for components in multistate coherent systems. Microelectron Reliab 31(1):109–122

    Article  Google Scholar 

  • Abouammoh AM, Al-Kad MA (1995) Multistate coherent systems of order k. Microelectron Reliab 35(11):1415–1421

    Article  Google Scholar 

  • Abouammoh AM, Alshingiti AM (2009) Reliability estimation of generalized inverted exponential distribution. J Stat Comput Simul 79(11):301–1315

    Article  MathSciNet  Google Scholar 

  • Ahmadi A, Kumar U, Soderholm P (2010) Risk of operational consequences of aircraft system failure. Int J Perform Eng 6:149–158

    Google Scholar 

  • Ahmed MA (2008) Redundancy optimization of reliability models subject to imperfect fault coverage. Int J Oper Res 5(2):99–106

    MathSciNet  Google Scholar 

  • Ali S (2013) On the mean residual life function and stress and strength analysis under different loss function for Lindley distribution. Int J Qual Stat Reliab (in press)

  • Ali S, Aslam M, Kundu D, Kazmi SMA (2012) Bayesian estimation of the mixture of generalized exponential distribution: a versatile lifetime model in industrial processes. J Chin Inst Ind Eng 29(4):246–269

    Google Scholar 

  • Ali S, Aslam M, Ali Kazmi SM (2013) A study of the effect of the loss function on Bayes estimate, posterior risk and hazard function for Lindley distribution. Appl Math Model 37(8):6068–6078

    Article  MathSciNet  MATH  Google Scholar 

  • Alidrisi MM (1987) A birth and death model for computing the reliability of a transmission network. Microelectron Reliab 27(4):653–659

    Article  Google Scholar 

  • Altiparmak F, Dengiz B, Smith AE (2009) A general neural network model for estimating telecommunications network reliability. IEEE Trans Reliab 58(1):2–9

    Article  Google Scholar 

  • Ammar HH, Nikzadeh T, Dugan JB (2001) Risk assessment of software-system specifications. IEEE Trans Reliab 50(2):171–183

    Article  Google Scholar 

  • Arsenault JE, Marais PD (1978) Effects of design automation on the reliability and maintainability design of electronic systems. Microelectron Reliab 17(1):143–153

    Article  Google Scholar 

  • Asadi M, Goliforushani S (2008) On the mean residual life function of coherent systems. IEEE Trans Reliab 54(4):574–580

    Article  Google Scholar 

  • Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concept and taxonomy of dependable and secure computing. IEEE Trans Dependable Secure Comput 1(1):11–33

    Article  Google Scholar 

  • Babu AJG, Suresh N (1996) Modeling and optimizing software quality. Int J Qual Reliab Manag 13(3):95–103

    Article  Google Scholar 

  • Bae SJ, Kim SJ, Kim MS, Lee BJ, Kang CW (2008). Degradation analysis of nano-contamination in plasma display panels. IEEE Trans Reliab 57(2):222–229

    Google Scholar 

  • Banerjee A, Kundu D (2008) Inference based on type-II hybrid censored data from a Weibull distribution. IEEE Trans Reliab 57(2):369–378

    Article  Google Scholar 

  • Barcelo S, Santiago V-P, Ferrer A (2011) Comparison of multivariate statistical methods for dynamic systems modeling. Qual Reliab Eng Int 27:107–124

    Article  Google Scholar 

  • Barros A, Berenguer C, Grall A (2003) Optimization of replacement times using imperfect monitoring information. IEEE Trans Reliab 52(4):523–533

    Article  Google Scholar 

  • Batra A, Ramachandran SP, Lu S, Hari S (2004) Reliability enhancement of electronic packages by design of optimal parameters. Microelectron Reliab 44(7):1157–1163

    Article  Google Scholar 

  • Beiser JA, Rigdon SE (1997) Bayes prediction for the number of failures of a repairable system. IEEE Trans Reliab 46(2):291–295

    Article  Google Scholar 

  • Blake JT, Trivedi KS (1989) Reliability analysis of interconnection networks using hierarchical composition. IEEE Trans Reliab 38(1):111–120

    Article  Google Scholar 

  • Bobbio A, Premoli A, Saracco O (1980) Multi-state homogeneous Markov models in reliability analysis. Microelectron Reliab 20(6):887–890

    Article  Google Scholar 

  • Boudali H, Dugan JB (2006) A continuous-time Bayesian network reliability modeling, and analysis framework. IEEE Trans Reliab 55(1):86–97

    Article  Google Scholar 

  • Bradlow SB (2009) Coherent systems: a brief survey. Cambridge University Press, Cambridge. pp 229–264. Chap doi:http://dx.doi.org/10.1017/CBO9781139107037.009

  • Calabria R, Pulcini G (1994) An engineering approach to Bayes estimation for the Weibull distribution. Microelectron Reliab 34(5):789–802

    Article  Google Scholar 

  • Camci F (2009) System maintenance scheduling with prognostics information using genetic algorithm. IEEE Trans Reliab 58(3):539–552

    Article  Google Scholar 

  • Castro HF, Cavalca KL (2003) Availability optimization with genetic algorithm. Int J Qual Reliab Manag 20(7):847–863

    Article  Google Scholar 

  • Chang KH (2009) Evaluate the orderings of risk for failure problems using a more general RPN methodology. Microelectron Reliab 49(12):1586–1596

    Article  Google Scholar 

  • Chang YLC, Lander LC, Lu H-S, Wells HT (1994) Bayes analysis for fault location in distributed systems. IEEE Trans Reliab 43(3):457–465, 469

    Google Scholar 

  • Cheng C-S, Hsu Y-T, Wu C-C (1998) An improved neural network realization for reliability analysis. Microelectron Reliab 38(3):345–352

    Article  Google Scholar 

  • Chiu C-C, Hsu C-H, Yeh Y-S (2006) A genetic algorithm for reliability-oriented task assignment with k duplications in distributed systems. IEEE Trans Reliab 55(1):105–117

    Article  Google Scholar 

  • Chiu T-C, Lin J-J, Yang H-C, Gupta V (2010) Reliability model for bridging failure of Pb-free ball grid array solder joints under compressive load. Microelectron Reliab 50(12):2037–2050

    Article  Google Scholar 

  • Chung WK (1990) Reliability analysis of a k-out-of-n: G redundant system with multiple critical errors. Microelectron Reliab 30(5):907–910

    Article  Google Scholar 

  • Chung WK (1991) Reliability analysis of a series repairable system with multiple failures. Microelectron Reliab 31(2–3):371–373

    Google Scholar 

  • Coelho LS (2009) Self-organizing migrating strategies applied to reliability-redundancy optimization of systems. IEEE Trans Reliab 58(3):501–510

    Article  MathSciNet  Google Scholar 

  • Coit DW, Smith AE (1996) Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Trans Reliab 45(2):254–260, 266

    Google Scholar 

  • Corsi F (1983) Mathematical models for marginal reliability analysis. Microelectron Reliab 23(6):1087–1102

    Article  Google Scholar 

  • Dabrowski W, Grybos P, Fiutowski T (2004) Design for good matching in multichannel low-noise amplifier for recording neuronal signals in modern neuroscience experiments. Microelectron Reliab 44(2):351–361

    Article  Google Scholar 

  • Dai Y-S, Levitin G (2007) Optimal resource allocation for maximizing performance and reliability in tree-structured grid services. IEEE Trans Reliab 56(3):444–453

    Article  MathSciNet  Google Scholar 

  • Dhillon BS (1980) Multi-state device redundant systems with common-cause failures and one standby unit. Microelectron Reliab 20(4):411–417

    Article  Google Scholar 

  • Dhillon BS (1993) Reliability and availability analysis of a system with warm standby and common cause failures. Microelectron Reliab 33(9):1343–1349

    Article  Google Scholar 

  • Dhillon BS, Misra RB (1984) Reliability evaluation of systems with critical human error. Microelectron Reliab 24(4):743–759

    Article  Google Scholar 

  • Drop JR, Mazzuchi TA, Fornell GE, Pollock LR (1996) A Bayes approach to step-stress accelerated life testing. IEEE Trans Reliab 45(3):491–498

    Article  Google Scholar 

  • Duchesne T, Marri F (2009) General distributional properties of discounted warranty costs with risk adjustment under minimal repair. IEEE Trans Reliab 58(1):143–151

    Article  Google Scholar 

  • El-Aroui M-A, Soler J-L (1996) A Bayes nonparametric framework for software reliability analysis. IEEE Trans Reliab 45(4):652–660

    Article  Google Scholar 

  • Felczak M, Wiecek B (2011) Application of genetic algorithms for electronic devices placement in structures with heat conduction through the substrate. Microelectron Reliab 51(2):453–459

    Article  Google Scholar 

  • Fernandez AJ (2008) Reliability inference and sample-size determination under double censoring for some two-parameter models. Comput Stat Data Anal 52(7):3426–3440

    Article  MATH  Google Scholar 

  • Giribabu G, Neogy S, Nasipuri M (2009) Optimal cost-effective design of standby systems subject to imperfect fault-coverage. Int J Recent Trends Eng 2(4):34–38

    Google Scholar 

  • Goel LR, Gupta R, Rana VS (1993) Reliability analysis of a satellite-based computer communication network system. Microelectron Reliab 33(2):119–126

    Article  Google Scholar 

  • Gupta RC, Gupta RD (1987) A comparison of various estimators of reliability. Comput Stat Data Anal 5(3):215–226

    Article  MATH  Google Scholar 

  • Gupta RC, Ghitany ME, Al-Mutairi DK (2012) Estimation of reliability from a bivariate log-normal data. J Stat Comput Simul, 1–14. doi: 10.1080/00949655.2011.649284

  • Hayashi M, Abe T (2011) Efficient reliability approximation method for traffic path-based network. IEEE Trans Reliab 60(2):460–469

    Article  Google Scholar 

  • Hochstenbach PH, Van Driel WD, Yang DG, Zaal DG, Bagerman E (2010) Designing for reliability using a new wafer level package structure. Microelectron Reliab 50(4):528–535

    Article  Google Scholar 

  • Hsieh Y-C, Chen T-C, Bricker DL (1998) Genetic algorithms for reliability design problems. Microelectron Reliab 38(10):1599–1605

    Article  Google Scholar 

  • Iskander WH, Nutter RS Jr (1988) Methodology development for safety and reliability analysis for electrical mine monitoring systems. Microelectron Reliab 28(4):888–897

    Google Scholar 

  • Jeng S-L, Lu J-C, Wang K (2007) A review of reliability research on nanotechnology. IEEE Trans Reliab 56(3):401–410

    Article  Google Scholar 

  • Jianping L, Xishen J (1997) A new partial bound enumeration technique for solving reliability redundancy optimization. Microelectron Reliab 37(2):237–242

    Article  Google Scholar 

  • Keeling KB, Pavur RJ (2007) A comparative study of the reliability of nine statistical software packages. Comput Stat Data Anal 51(8):3811–3831

    Article  MathSciNet  MATH  Google Scholar 

  • Khoshgoftaar TM, Szabo RM (1996) Using neural networks to predict software faults during testing. IEEE Trans Reliab 45(3):456–462

    Article  Google Scholar 

  • Kovac U, Reid D, Millar C, Roy G, Roy S, Asenov A (2008) Statistical simulation of random dopant induced threshold voltage fluctuations for 35 nm channel length MOSFET. Microelectron Reliab 48(8–9):1572–1575

    Google Scholar 

  • Krishna H, Malik M (2009) Reliability estimation in Maxwell distribution with type-II censored data. Int J Qual Reliab Manag 26(2):184–195

    Article  Google Scholar 

  • Krishna H, Malik M (2012) Reliability estimation in Maxwell distribution with progressively type-II censored data. J Stat Comput Simul 82(4):623–641

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar K, Kumar P (2010) Mathematical modeling and analysis of stainless steel utensil manufacturing unit using fuzzy reliability. Int J Eng Sci Technol 2(6):2370–2376

    Google Scholar 

  • Kumar A, Pathak RM, Gupta YP (1995) Genetic-algorithm-based reliability optimization for computer network expansion. IEEE Trans Reliab 44(1):63–72

    Article  Google Scholar 

  • Kumar R, Izui K, Masataka Y, Nishiwaki S (2008) Multilevel redundancy allocation optimization using hierarchical genetic algorithm. IEEE Trans Reliab 57(4):650–661

    Article  Google Scholar 

  • Kundu D, Gupta R (2006) Estimation of P (Y < X) for Weibull distribution. IEEE Trans Reliab 55(2):270–280

    Article  Google Scholar 

  • Kundu D, Sarhan AM (2006) Analysis of incomplete data in presence of competing risks among several groups. IEEE Trans Reliab 55(2):262–269

    Article  Google Scholar 

  • Kundu D, Kannan N, Balakrishnan N (2008) On the hazard function of Birnbaum–Saunders distribution and associated inference. Comput Stat Data Anal 52(5):2692–2702

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo W (1983) Software reliability estimation: a realization of competing risk. Microelectron Reliab 23(2):249–260

    Article  Google Scholar 

  • Kusiak A, Lee GH (1997) Design of parts and manufacturing systems for reliability and maintainability. Int J Adv Manuf Technol 13(1):67–76

    Article  Google Scholar 

  • Kyriakoussis A, Papadopoulos AS (1990) The logarithmic series distribution as a failure model from the Bayesian point of view. Microelectron Reliab 30(1):133–139

    Article  Google Scholar 

  • Lee SM, Lee CH, Park DH (2004) Sequential capacity determination of sub networks in network performance analysis. IEEE Trans Reliab 53(4):481–486

    Article  Google Scholar 

  • Levitin G (2001) Redundancy optimization for multi-state system with fixed resource-requirements and unreliable sources. IEEE Trans Reliab 50(1):52–59

    Article  MathSciNet  Google Scholar 

  • Levitin G, Lisnianski A, Ben-Haim H, Elmakis D (1998) Redundancy optimization for series-parallel multi-state systems. IEEE Trans Reliab 47(2):165–172

    Article  Google Scholar 

  • Lin Y-K (2011) Network reliability of a time based multistate network under spare routing with p minimal paths. IEEE Trans Reliab 60(1):61–69

    Article  Google Scholar 

  • Lin Y-K, Yeh C-T (2010) Evaluation of optimal network reliability under components-assignments subject to a transmission budget. IEEE Trans Reliab 59(3):539–550

    Article  Google Scholar 

  • Low CK, Balasooriya U (2007) Order statistics based sampling design for reliability sampling. J Stat Comput Simul 77(8):709–715

    Article  MathSciNet  MATH  Google Scholar 

  • Lu P-E (1985a) Calculate coherent system’s reliability by using SLE. Microelectron Reliab 25(5):829–831

    Article  Google Scholar 

  • Lu P-E (1985b) Sensitivity analysis of a coherent system. Microelectron Reliab 25(1):97–99

    Article  Google Scholar 

  • Manzoul MA, Suliman M (1990) Neural network for the reliability analysis of simplex systems. Microelectron Reliab 30(4):795–800

    Article  Google Scholar 

  • Meng Q, Qu X (2011) A probabilistic quantitative risk assessment model for fire in road tunnels with parameter uncertainty. Int J Reliab Saf 5(3/4):285–298

    Article  Google Scholar 

  • Meng X, Zerfos P, Samanta V, Wong SHY, Lu S (2006). A study of short message service of a nationwide cellular network. In: IMC internet measurement conference. pp 263–268

  • Minehane S, Duane R, O’Sullivan P, McCarthy KG, Mathewson A (2000) Design for reliability. Microelectron Reliab 40(8–10):1285–1294

    Google Scholar 

  • Misra KB, Sharma U (1991) Multicriteria optimization for combined reliability and redundancy allocation in systems employing mixed redundancies. Microelectron Reliab 31(2–3):323–335

    Google Scholar 

  • Murata T, Bhatia RS, Shatz SM (1991) Markov chain reduction and analysis of GSPN models for task allocation in distributed systems. Microelectron Reliab 31(4):727–746

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

  • Newman DE, Carreras BA, Lynch VE, Dobson I (2011) Exploring complex systems aspects of blackout risk and mitigation. IEEE Trans Reliab 60(1):134–143

    Article  Google Scholar 

  • Painton L, Campbell J (1995) Genetic algorithms in optimization of system reliability. IEEE Trans Reliab 44(2):172–178

    Article  Google Scholar 

  • Pandey M, Upadhyay SK (1986) Bayes estimation of reliability in stress-strength model of Weibull distribution with equal scale parameters. Microelectron Reliab 26(2):275–278

    Article  Google Scholar 

  • Pathak R, Joshi S (2011) Optimizing reliability modeling of MEMS devices based on their applications. World J Model Simul 7(2):139–154

    MathSciNet  Google Scholar 

  • Patnaik S, Brunskill E, Thies W (2009) Evaluating the data accuracy of data collection on mobile phones: a study of forms, SMS, and voice. In: International conference on information and communication technologies and development (ICTD). pp 74–84

  • Petingi LA (2011) Introduction of a new network reliability model to evaluate the performance of sensor networks. Int J Math Models Methods Appl Sci 5(3):577–585

    Google Scholar 

  • Pham H (2011) Modeling U.S. mortality and risk-cost optimization on life expectancy. IEEE Trans Reliab 60(1):125–133

    Article  Google Scholar 

  • Prasad VR, Kuo W (2000) Reliability optimization of coherent systems. IEEE Trans Reliab 49(3):323–330

    Article  Google Scholar 

  • Ram M (2010) Reliability measures of a three-state complex system: a copula approach. Appl Appl Math Int J 5(10):1483–1492

    MathSciNet  MATH  Google Scholar 

  • Ram M, Singh SB (2008) Availability and cost analysis of a parallel redundant complex system with two types of failure under preemptive-resume repair discipline using Gumbel–Hougaard family copula in repair. Int J Reliab Qual Saf Eng 15(4):341–365

    Article  Google Scholar 

  • Ram M, Singh SB (2009) Analysis of reliability characteristics of a complex engineering system under copula. J Reliab Stat Stud 2(1):91–102

    MathSciNet  MATH  Google Scholar 

  • Ram M, Singh SB (2010a) Availability, MTTF and cost analysis of complex system under preemptive-repeat repair discipline using Gumbel–Hougaard family copula. Int J Qual Reliab Manag 27(5):576–595

    Article  Google Scholar 

  • Ram M, Singh SB (2010b) Analysis of a complex system with common cause failure and two types of repair facilities with different distributions in failure. Int J Reliab Saf 4(4):381–392

    Article  Google Scholar 

  • Ram M, Singh SB, Singh VV (2013) Stochastic analysis of a standby system with waiting repair strategy. IEEE Trans Syst Man Cybern Syst 43(3):698–707

    Article  MathSciNet  Google Scholar 

  • Ramachandran V, Sivakumar V, Sathiyanarayanan K, Chandrasekaran S (1997) Genetics based redundancy optimization. Microelectron Reliab 37(4):661–663

    Article  Google Scholar 

  • Rana VS (1995) Reliability analysis of a national broadcasting network (NBN) system. Microelectron Reliab 35(2):303–307

    Article  Google Scholar 

  • Rushdi AM, Kafrawy KF (1988) Uncertainty propagation in fault-tree analyses using an exact method of moments. Microelectron Reliab 28(6):945–965

    Article  Google Scholar 

  • Sarhan AM, Kundu D (2008) Bayes estimators for reliability measures in geometric distribution model using masked system life test data. Comput Stat Data Anal 52(4):1821–1836

    Article  MathSciNet  MATH  Google Scholar 

  • Shanthikumar JG, Tufekci S (1983) Application of a software reliability model to decide software release time. Microelectron Reliab 23(1):41–59

    Article  Google Scholar 

  • Shao F-M, Shen X, Ho P-H (2005) Reliability optimization of distributed access networks with constrained total cost. IEEE Trans Reliab 54(3):421–430

    Article  Google Scholar 

  • Sharma U, Misra KB (1990) An efficient algorithm to solve integer-programming problems in reliability optimization. Int J Qual Reliab Manag 7(5):44–56

    Article  Google Scholar 

  • Sherif YS (1980) First-passage time distribution of Brownian motion as a reliability model. IEEE Trans Reliab R-29(5):425–426

    Google Scholar 

  • Sherif YS (1990) Environmental and technological risks and hazards. Microelectron Reliab 30(5):915–950

    Article  Google Scholar 

  • Sherif YS, Matt BJ (1988) Computer networks and distributed systems. Microelectron Reliab 28(3):419–467

    Article  Google Scholar 

  • Singh VV, Singh SB, Ram M, Goel CK (2010) Availability analysis of a system having three units super priority, priority and ordinary under preemptive resume repair policy. Int J Reliab Appl 11(1):41–53

    Google Scholar 

  • Sinha SM, Kapil DVS (1980) Optimum preventive maintenance policies for a 2-unit redundant system with repair and post repair. Microelectron Reliab 20(6):891–893

    Article  Google Scholar 

  • Soi IM, Aggarwal KK (1980) On human reliability trends in digital communication systems. Microelectron Reliab 20(6):831–835

    Article  Google Scholar 

  • Sotiris VA, Tse PW, Pecht MG (2010) Anomaly detection through a Bayesian support vector machine. IEEE Trans Reliab 59(2):277–286

    Article  Google Scholar 

  • Stillman RH, Darveniza M (1989) Failure and safety analysis of widespread overhead distribution systems. Int J Qual Reliab Manag 6(3):38–53

    Article  Google Scholar 

  • Stillman RH, Darveniza M, Shannon G (1991) Risk, hazard and negligence in an electricity distribution system. Int J Qual Reliab Manag 8(6):63–78

    Article  Google Scholar 

  • Stopjakova V, Malosek P, Matej M, Nagy V, Margala M (2005) Defect detection in analog and mixed circuits by neural networks using wavelet analysis. IEEE Trans Reliab 54(3):441–448

    Article  Google Scholar 

  • Suliman M, Manzoul MA (1991) Neural network realization of Markov reliability and fault-tolerance models. Microelectron Reliab 31(1):14–141

    Google Scholar 

  • Sultan KS, Al-Moisheer AS (2012) Approximate Bayes estimation of the parameters and reliability function of a mixture of two inverse Weibull distributions under type-2 censoring. J Stat Comput Simul, 1–15. doi:10.1080/00949655.2012.673614

  • Sup SC, Kwon CY (1999) Branch-and-bound redundancy optimization for a series system with multiple-choice constraints. IEEE Trans Reliab 48(2):108–117

    Article  Google Scholar 

  • Taboada HA, Espiritu JF, Coit DW (2008) MOMS-GA: a multi-objective multi-state genetic algorithm for system reliability optimization design problems. IEEE Trans Reliab 57(1):182–191

    Article  Google Scholar 

  • Taghipour S, Banjevic D (2011) Periodic inspection optimization models for a repairable system subject to hidden failures. IEEE Trans Reliab 60(1):275–285

    Article  Google Scholar 

  • Tekiner-Mogulkoc H, Coit DW (2011) System reliability optimization considering uncertainty: minimization of the coefficient of variation for series-parallel systems. IEEE Trans Reliab 60(3):667–674

    Article  Google Scholar 

  • Tian Z, Zuo MJ (2010) Health condition prediction of gears using a recurrent neural network approach. IEEE Trans Reliab 59(4):700–705

    Article  Google Scholar 

  • Tiwari RC, Kimmel C (1991) Nonparametric Bayes estimation of the survival function and failure rate from record- breaking data. Microelectron Reliab 31(1):149–157

    Article  Google Scholar 

  • Tiwari N, Singh SB (2010) Analysis of a complex system modelled by a marked point process and assuming vacations for a repairman. Econ Qual Control 25:221–242

    MathSciNet  MATH  Google Scholar 

  • Todinov MT (2011) Analysis and optimization of repairable flow networks with complex topology. IEEE Trans Reliab 60(1):111–124

    Article  Google Scholar 

  • Trivedi K, Dugan JB (1984) Hybrid reliability modeling of fault-tolerant computer systems. Comput Eng 11(2/3):87–108

    Google Scholar 

  • Tyagi RK, Kumar S, Tiwari RC, Bhattacharaya SK (1992). Parametric empirical Bayes approach to reliability analysis for the geometric life model. Microelectron Reliab 32(9):1271–1282

    Google Scholar 

  • Uemura T, Dohi T, Kaio N (2010) Availability analysis of an intrusion tolerant distributed server system with preventive maintenance. IEEE Trans Reliab 59(1):18–29

    Article  Google Scholar 

  • Utkin LV (1993) Uncertainty importance of multistate system components. Microelectron Reliab 33(13):2021–2029

    Article  Google Scholar 

  • Verma AK, Tamhankar MT (1997) Reliability-based optimal task-allocation in distributed-database management systems. IEEE Trans Reliab 46(4):452–459

    Article  Google Scholar 

  • Verma AK, Ajit S, Karanki DR (2010) Reliability and safety engineering, 1st edn. ISBN: 978-1-84996-231-5. Springer, London

  • Vilkomir SA, Parnas DL, Mendiratta VB, Murphy E (2005) Availability evaluation of systems with several recovery procedures based on a new ‘segregated failures’ model. Comput Softw Appl Conf 2:473–478

    Google Scholar 

  • Wang H, Pham H (1997) Survey of reliability and availability evaluation of complex networks using Monte Carlo techniques. Microelectron Reliab 37(2):187–209

    Article  Google Scholar 

  • Wilkie D, Drwinga R, Eichman E, Kunnari N, Negley B, Richardson D (1997) A design of experiment analysis of serial EEPROM endurance. Microelectron Reliab 37(3):487–491

    Article  Google Scholar 

  • Xue J, Yang K (1995) Dynamic reliability analysis of coherent multistate systems. IEEE Trans Reliab 44(4):683–688

    Article  Google Scholar 

  • Yaun T, Kuo Y (2010) Bayesian analysis of hazard rate, change point, and cost-optimal burn-in time for electronic devices. IEEE Trans Reliab 59(1):132–138

    Article  Google Scholar 

  • Ye RD, Ma TF, Luo K (2012) Inferences on the reliability in balanced and unbalanced one-way random models. J Stat Comput Simul 1–18. doi:10.1080/00949655.2012.741598

  • Yeh W-C, Yeh Y-M (2011) A novel label universal generating function method for evaluating the one-to-all-subsets general multistate information network reliability. IEEE Trans Reliab 60(2):470–478

    Article  Google Scholar 

  • Yu K, Koren I, Yuqing G (1994) Generalized multistate monotone coherent systems. IEEE Trans Reliab 43(2):242–250

    Article  Google Scholar 

  • Zamanali J (1998) Probabilistic-risk-assessment applications in the nuclear-power industry. IEEE Trans Reliab 47(3):SP361–SP364

    Google Scholar 

  • Zhang Z, Xiaohu L (2010) Some new results on stochastic orders and aging properties of coherent systems. IEEE Trans Reliab 59(4):718–724

    Article  Google Scholar 

  • Zhao Z (2003) Thermal design of a broadband communication system with detailed modeling of TBGA packages. Microelectron Reliab 43(5):785–793

    Article  Google Scholar 

  • Zheng L-R, Liu J (2003) System-on-package: a broad perspective from system design to technology development. Microelectron Reliab 43(8):1339–1348

    Article  Google Scholar 

Download references

Acknowledgments

Author wishes to express sincere thanks to the reviewers and Editors of the Journal whose critical comments have significantly improved the paper in the present form. Author is also thankful to the Research and Development Department of the Graphic Era University, Dehradun, India for the facilities provided for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangey Ram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ram, M. On system reliability approaches: a brief survey. Int J Syst Assur Eng Manag 4, 101–117 (2013). https://doi.org/10.1007/s13198-013-0165-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-013-0165-6

Keywords