Incremental calculation approaches for granular reduct in formal context with attribute updating | International Journal of Machine Learning and Cybernetics Skip to main content
Log in

Incremental calculation approaches for granular reduct in formal context with attribute updating

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Attribute reduction in formal concept analysis is a highly concerned dimensionality reduction method, which purifies formal context by removing unimportant attributes. Current trends of dealing with attribute reduction problem for large-scale datasets is mainly based on object updating, thus, ignore the fact that attributes may also be modified with evolving time. With that in mind, this study considers the attribute reduction of the data with attribute dynamic environments. Specifically, we first analyze the incremental mechanism of granular reduct in a formal context, as well as develop the corresponding incremental algorithms. Then, in a consistent formal decision context, we address the consistency-based incremental attribute reduction problem on the premise that the decision attribute set remains unchanged. In addition, to obtain a smaller reduction, attribute significance is defined to measure the identification ability of attributes to inconsistent objects. Different from the existing methods, the algorithms proposed in this paper can realize dynamic calculation of granular reduct and the numerical experiments conducted show that the algorithm proposed in this paper is more efficient than other algorithms in the face of large-scale datasets. In the meantime, the generated granular reduct can improve the accuracy of classifiers in the classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered sets, pp 445–470. https://doi.org/10.1007/978-94-009-7798-3_15

  2. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356. https://doi.org/10.1007/BF01001956

    Article  MATH  Google Scholar 

  3. Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  4. Li JH, Mei CL, Lv YJ (2013) Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction. Int J Approx Reason 54(1):149–165. https://doi.org/10.1016/j.ijar.2012.07.005

    Article  MathSciNet  MATH  Google Scholar 

  5. Li JH, Mei CL, Kumar CA et al (2013) On rule acquisition in decision formal contexts. Int J Mach Learn Cybern 4(6):721–731. https://doi.org/10.1007/s13042-013-0150-z

    Article  Google Scholar 

  6. Li JH, Kumar CA, Mei CL et al (2017) Comparison of reduction in formal decision contexts. Int J Approx Reason 80(3):100–122. https://doi.org/10.1016/j.ijar.2016.08.007

    Article  MathSciNet  MATH  Google Scholar 

  7. Carpineto C, Romano G (1996) A lattice conceptual clustering system and its application to browsing retrieval. Mach Learn 24(2):95–122. https://doi.org/10.1007/BF00058654

    Article  Google Scholar 

  8. Godin R, Missaoui R, Alaoui H (1995) Incremental concept formation algorithm based on Galois (concept) lattices. Comput Intell 11(2):246–67. https://doi.org/10.1111/j.1467-8640.1995.tb00031.x

    Article  Google Scholar 

  9. Kumar CA (2012) Fuzzy clustering-based formal concept analysis for association rules mining. Appl Artif Intell 26(3):274–301. https://doi.org/10.1080/08839514.2012.648457

    Article  Google Scholar 

  10. Li KW, Shao MW, Wu WZ (2017) A data reduction method in formal fuzzy contexts. Int J Mach Learn Cybern 8(4):1145–1155. https://doi.org/10.1007/s13042-015-0485-8

    Article  Google Scholar 

  11. Ma JM, Hu LL, Qian YH (2019) Object-oriented interval-set concept lattices. Int J Approx Reason 110:64–81. https://doi.org/10.1016/j.ijar.2019.03.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Yao YY (2016) Three-way decisions and cognitive computing. Cogn Comput 8(4):543–554. https://doi.org/10.1007/s12559-016-9397-5

    Article  Google Scholar 

  13. Yao YY (2018) Three-way decision and granular computing. Int J Approx Reason 103:107–123. https://doi.org/10.1016/j.ijar.2018.09.005

    Article  MATH  Google Scholar 

  14. Wang XZ, Dong LC, Yan JH (2012) Maximum ambiguity-based sample selection in fuzzy decision tree induction. IEEE Trans Knowl Data Eng 24(8):1491–1505. https://doi.org/10.1109/TKDE.2011.67

    Article  Google Scholar 

  15. Wang XZ, Xing HJ, Li Y et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654. https://doi.org/10.1109/TFUZZ.2014.2371479

    Article  Google Scholar 

  16. Ni P, Zhao SY, Wang XZ et al (2020) Incremental feature selection based on fuzzy rough sets. Inform Sci 536:185–204. https://doi.org/10.1016/j.ins.2020.04.038

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang CZ, Hu QH, Wang XZ et al (2018) Feature selection based on neighborhood discrimination index. IEEE Trans Neural Netw Learn Syst 29(7):2986–2999. https://doi.org/10.1016/10.1109/TNNLS.2017.2710422

    Article  MathSciNet  Google Scholar 

  18. Zhang WX, Wei L, Qi JJ (2005) Attribute reduction theory and approach to concept lattices. Sci China Ser F 48(6):713–726. https://doi.org/10.1360/122004-104

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang WX, Wei L, Qi JJ (2005) Attribute reduction in concept lattice based on discernibility matrix. In: International workshop on rough sets, fuzzy sets, data mining, and granular-soft computing, Springer, Berlin, pp 157–165

  20. Yang YY, Chen DG, Dong Z (2014) Novel algorithms of attribute reduction with variable precision rough set model. Neurocomputing 139:336–344. https://doi.org/10.1016/j.neucom.2014.02.023

    Article  Google Scholar 

  21. Chen DG, Zhang L, Dong Z (2016) An incremental algorithm for attribute reduction with variable precision rough sets. Appl Soft Comput 45:129–149. https://doi.org/10.1016/j.asoc.2016.04.003

    Article  Google Scholar 

  22. Chen DG, Zhao SY, Zhang L et al (2012) Sample pair selection for attribute reduction with rough set. IEEE Trans Knowl Data Eng 24(11):2080–2093. https://doi.org/10.1109/TKDE.2011.89

    Article  Google Scholar 

  23. Chen DG, Hu QH, Yang YP (2011) Parameterized attribute reduction with gaussian kernel based fuzzy rough sets. Inf Sci 181(23):5169–6179. https://doi.org/10.1016/j.ins.2011.07.025

    Article  MATH  Google Scholar 

  24. Leung Y, Fischer MM, Wu WZ et al (2008) A rough set approach for the discovery of classification rules in interval-valued information systems. Int J Approx Reason 47(2):233–246. https://doi.org/10.1016/j.ijar.2007.05.001

    Article  MathSciNet  MATH  Google Scholar 

  25. Mi JS, Wu WZ, Zhang WX (2004) Approaches to knowledge reductions based on variable precision rough sets model. Inf Sci 159(3–4):255–272. https://doi.org/10.1016/j.ins.2003.07.004

    Article  MathSciNet  MATH  Google Scholar 

  26. Mi JS, Leung Y, Wu WZ (2010) Approaches to attribute reduction in concept lattices induced by axialities. Knowl-Based Syst 23(6):504–511. https://doi.org/10.1016/j.knosys.2010.03.007

    Article  Google Scholar 

  27. Wu WZ (2008) Attribute reduction based on evidence theory in incomplete decision systems. Inf Sci 178(5):1355–1371. https://doi.org/10.1016/j.ins.2007.10.006

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu QH, Yu DR, Liu JF et al (2008) Neighborhood rough set based heterogeneous feature subset selection. Inf Sci 178(18):3577–3594. https://doi.org/10.1016/j.ins.2008.05.024

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang CC, Dai JH, Chen JL (2020) Knowledge granularity based incremental attribute reduction for incomplete decision systems. Int J Mach Learn Cybern 11(6):1141–1157. https://doi.org/10.1007/s13042-020-01089-4

    Article  Google Scholar 

  30. Chen JK, Mi JS, Xie B et al (2021) Attribute reduction in formal decision contexts and its application to finite topological spaces. Int J Mach Learn Cybern 12(3):39–52. https://doi.org/10.1007/s13042-020-01147-x

    Article  Google Scholar 

  31. Qi JJ (2009) Attribute reduction in formal contexts based on a new discernibility matrix. J Appl Math Comput 30(1–2):305–314. https://doi.org/10.1007/s12190-008-0174-9

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu M, Shao MW, Zhang WX et al (2007) Reduction method for concept lattices based on rough set theory and its application. Comput Math Appl 53(9):1390–1410

    Article  MathSciNet  Google Scholar 

  33. Wei L, Qi JJ, Zhang WX (2008) Attribute reduction theory of concept lattice based on decision formal contexts. Sci China Ser F Inf Sci 51(7):910–923. https://doi.org/10.1007/s11432-008-0067-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang H, Zhang WX (2008) Approaches to knowledge reduction in generalized consistent decision formal context. Math Comput Model 48(11–12):1677–1684. https://doi.org/10.1016/j.mcm.2008.06.007

    Article  MathSciNet  MATH  Google Scholar 

  35. Li JH, Mei CL, Lv YJ (2011) A heuristic knowledge-reduction method for decision formal contexts. Comput Math Appl 61(4):1096–1106. https://doi.org/10.1016/j.camwa.2010.12.060

    Article  MathSciNet  MATH  Google Scholar 

  36. Kumar CA, Dias SM, Newton JV (2015) Knowledge reduction in formal contexts using non-negative matrix factorization. Math Comput Simul 109(C):46–63. https://doi.org/10.1016/j.matcom.2014.08.004

    Article  MathSciNet  MATH  Google Scholar 

  37. Ganter B, Wille R (1999) Formal concept analysis. Mathematical foundations. Springer, Berlin

    Book  Google Scholar 

  38. Wu WZ, Leung Y, Mi JS (2009) Granular computing and knowledge reduction in formal contexts. IEEE Trans Knowl Data Eng 21(10):1461–1474. https://doi.org/10.1109/TKDE.2008.223

    Article  Google Scholar 

  39. Shao MW, Lung Y (2014) Relation between granular reduct and dominance reduct in formal contexts. Knowl-Based Syst 65:1–11. https://doi.org/10.1016/j.knosys.2014.03.006

    Article  Google Scholar 

  40. Huang CC, Li JH, Disa SM (2016) Attribute significance, consistency measure and attribute reduction in formal concept analysis. Neural Netw Eorld 26(6):607–623. https://doi.org/10.14311/NNW.2016.26.035

    Article  Google Scholar 

  41. Chen JK, Mi JS, Lin YJ (2018) A graph approach for knowledge reduction in formal contexts. Knowl-Based Syst 148:177–188. https://doi.org/10.1016/j.knosys.2018.02.039

    Article  Google Scholar 

  42. Lin YD, Li JJ, Wang HK (2020) Granular matrix method of attribute reduction in formal contexts. Soft Comput 24(21):16303–16314. https://doi.org/10.1007/s00500-020-04941-5

    Article  MATH  Google Scholar 

  43. Li JH, Mei CL, Xu WH et al (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447–467. https://doi.org/10.1016/j.ins.2014.12.010

    Article  MathSciNet  MATH  Google Scholar 

  44. Niu JJ, Huang CC, Li JH et al (2018) Parallel computing techniques for concept-cognitive learning based on granular computing. Int J Mach Learn Cybern 9(11):1785–1805. https://doi.org/10.1007/s13042-018-0783-z

    Article  Google Scholar 

  45. Zhao YX, Li JH, Liu WQ et al (2017) Cognitive concept learning from incomplete information. Int J Mach Learn Cybern 8(1):159–170. https://doi.org/10.1007/s13042-016-0553-8

    Article  Google Scholar 

  46. Kent RE (1994) Rough concept analysis. In: Ziarko WP (ed) Rough sets, fuzzy sets and knowledge discovery. Springer-Verlag, London, pp 248–255

    Chapter  Google Scholar 

  47. Yao YY (2004) Concept lattices in rough set theory. In: Proceedings of 2004 annual meeting of the North American fuzzy information processing society. IEEE Computer Society, Washington, DC, pp 796-801. https://doi.org/10.1109/NAFIPS.2004.1337404

  48. Yao YY (2004) A comparative study of formal concept analysis and rough set theory in data analysis. In: Proceedings of 4th international conference on rough sets and current trends in computing, Uppsala, Sweden, pp 59-68. https://doi.org/10.1007/978-3-540-25929-9_6

  49. Wang LD, Liu XD (2008) Concept analysis via rough set and AFS algebra. Inf Sci 178(21):4125–4137. https://doi.org/10.1016/j.ins.2008.07.004

    Article  MathSciNet  MATH  Google Scholar 

  50. Guo LK, Huang FP, Li QG et al (2011) Power contexts and their concept lattices. Discrete Math 311(18–19):2049–2063. https://doi.org/10.1016/j.disc.2011.04.033

    Article  MathSciNet  MATH  Google Scholar 

  51. Qi JJ, Qian T, Wei L (2016) The connections between three-way and classical concept lattices. Knowl-Based Syst 91:143–151. https://doi.org/10.1016/j.knosys.2015.08.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2020YFB1707802) and the National Natural Science Foundation of China (No. 12071131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaojiao Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Chen, D. Incremental calculation approaches for granular reduct in formal context with attribute updating. Int. J. Mach. Learn. & Cyber. 13, 2763–2784 (2022). https://doi.org/10.1007/s13042-022-01561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01561-3

Keywords

Navigation