An improved multi-population whale optimization algorithm | International Journal of Machine Learning and Cybernetics Skip to main content
Log in

An improved multi-population whale optimization algorithm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Clustering techniques and metaheuristic algorithms (MA) have demonstrated being efficient tools in their respective action fields. However, working together is an area marginally explored. One of the main disadvantages of MA is the lack of diversity in the solutions. Besides, most of them use only a single population to analyze the search space; this affects the capabilities to find the optimal solutions. This article proposes an approach called K-WOA that merges the benefits of two methods into a single algorithm. The K-means is a popular clustering technique based on centroids. Due to its simplicity and efficiency, combining it with a MA as the whale optimization algorithm (WOA) is ideal. This proposed K-WOA aims to increase the diversity of solutions in optimization problems by creating multiple groups of search agents operating cooperatively to explore the search space. To perform this task, the K-means is used in the initialization process to separate the population into different subgroups that the WOA independently evolves. In each sub-population, the best search agent is chosen to compare with the best agents of the other whale groups. By doing this, the algorithm can explore different regions of the search space simultaneously with more than one element. The K-WOA is proposed as an improved optimization algorithm that simultaneously searches for optimal solutions in multiple regions of the search space. The experimental results and comparisons with state-of-the-art approaches show that the proposed algorithm is competitive for solving complex optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abderazek H, Hamza F, Yildiz AR, Sait SM (2021) Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design. Mater Test 63(3):266–271

    Article  Google Scholar 

  2. Agarwal P, Mehta S, Abraham A (2021) A meta-heuristic density-based subspace clustering algorithm for high-dimensional data. Soft Comput 25(15):10237–10256

    Article  Google Scholar 

  3. Asghari K, Masdari M, Gharehchopogh FS, Saneifard R (2021) Multi-swarm and chaotic whale-particle swarm optimization algorithm with a selection method based on roulette wheel. Expert Syst 38(8):e12779

    Article  Google Scholar 

  4. Ashraf NM, Mostafa RR, Sakr RH, Rashad M (2021) Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm. Plos One 16(6):e0252754

    Article  Google Scholar 

  5. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  6. Aye CM, Pholdee N, Yildiz AR, Bureerat S, Sait SM (2019) Multi-surrogate-assisted metaheuristics for crashworthiness optimisation. Int J Veh Des 80(2–4):223–240

    Article  Google Scholar 

  7. Beyer HG, Schwefel HP (2002) Evolution strategie—-a comprehensive introduction. Natural Comput 1(1):3–52

    Article  MathSciNet  MATH  Google Scholar 

  8. Çelik Y, Kutucu H (2018) Solving the tension/compression spring design problem by an improved firefly algorithm. IDDM 1(2255):1–7

    Google Scholar 

  9. Champasak P, Panagant N, Pholdee N, Bureerat S, Yildiz AR (2020) Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle. Aerosp Sci Technol 100:105783

    Article  Google Scholar 

  10. Cuevas E, Gonzalez M, Zaldivar D, Perez-Cisneros M, García G (2012) An algorithm for global optimization inspired by collective animal behavior. Discrete Dyn Nat Soc 2012: https://doi.org/10.1155/2012/638275

    Article  MathSciNet  Google Scholar 

  11. David G (1989) Genetic algorithms in search, optimization, and machine learning, 1st edn. Addison-Wesley, Boston

    MATH  Google Scholar 

  12. Díaz-Cortés MA, Cuevas E, Gálvez J, Camarena O (2017) A new metaheuristic optimization methodology based on fuzzy logic. Appl Soft Comput 61:549–569

    Article  Google Scholar 

  13. Dickson A, Thomas C (2021) Identifying network intrusion using enhanced whale optimization algorithm. In: Intelligent systems, technologies and applications. Springer, pp 103–116

  14. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  15. García S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization. J Heurist 15(6):617. https://doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

  16. Goyal S, Bhushan S, Kumar Y, Bhutta MR, Ijaz MF, Son Y et al (2021) An optimized framework for energy-resource allocation in a cloud environment based on the whale optimization algorithm. Sensors 21(5):1583

    Article  Google Scholar 

  17. Gupta S, Agarwal M, Jain S (2019) Automated genre classification of books using machine learning and natural language processing. In: 2019 9th international conference on cloud computing, data science & engineering (confluence). IEEE, pp 269–272

  18. Houssein EH, Hosney ME, Elhoseny M, Oliva D, Mohamed WM, Hassaballah M (2020) Hybrid Harris Hawks optimization with cuckoo search for drug design and discovery in chemoinformatics. Sci Rep 10(1):1–22

    Article  Google Scholar 

  19. Hussain K, Salleh MNM, Cheng S, Naseem R (2017) Funciones de referencia comunes para la evaluación metaheurística: una revisión. JOIV: Revista internacional de visualización informática 1(4–2):218–223

    Article  Google Scholar 

  20. Kadiravan G, Sujatha P, Asvany T, Punithavathi R, Elhoseny M, Pustokhina I, Pustokhin DA, Shankar K (2021) Metaheuristic clustering protocol for healthcare data collection in mobile wireless multimedia sensor networks. Comput Mater Continua 66(3):3215–3231

    Article  Google Scholar 

  21. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  22. Karaduman A, Yıldız BS, Yıldız AR (2019) Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry. Int J Veh Des 80(2–4):330–345

    Article  Google Scholar 

  23. Karpagam M, Geetha K, Rajan C (2021) A reactive search optimization algorithm for scientific workflow scheduling using clustering techniques. J Ambient Intell Human Comput 12(2):3199–3207

    Article  Google Scholar 

  24. Kaya E, Uymaz SA, Kocer B (2019) Boosting galactic swarm optimization with abc. Int J Mach Learn Cybern 10(9):2401–2419

    Article  Google Scholar 

  25. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

  26. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  27. MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 14. Oakland, CA, USA, pp 281–297

  28. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  29. Meng Z, Li G, Wang X, Sait SM, Yıldız AR (2021) A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch Comput Methods Eng 28:1853–1869

    Article  MathSciNet  Google Scholar 

  30. Miao Z, Gaynor KM, Wang J, Liu Z, Muellerklein O, Norouzzadeh MS, McInturff A, Bowie RC, Nathan R, Stella XY et al (2019) Insights and approaches using deep learning to classify wildlife. Sci Rep 9(1):1–9

    Article  Google Scholar 

  31. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  32. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  33. Mostafa Bozorgi S, Yazdani S (2019) Iwoa: an improved whale optimization algorithm for optimization problems. J Comput Des Eng 6(3):243–259

    Google Scholar 

  34. Mousavirad SJ, Schaefer G, Moghadam MH, Saadatmand M, Pedram M (2021) A population-based automatic clustering algorithm for image segmentation. In: Proceedings of the genetic and evolutionary computation conference companion, pp 1931–1936

  35. Mousavirad SJ, Zabihzadeh D, Oliva D, Perez-Cisneros M, Schaefer G (2022) A grouping differential evolution algorithm boosted by attraction and repulsion strategies for masi entropy-based multi-level image segmentation. Entropy 24(1):8

    Article  Google Scholar 

  36. Muthiah-Nakarajan V, Noel MM (2016) Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion. Appl Soft Comput 38:771–787

    Article  Google Scholar 

  37. Oldroyd DR (1986) Charles Darwin’s theory of evolution: a review of our present understanding. Biol Philos 1(2):133–168

    Article  Google Scholar 

  38. Oliva D, Abd Elaziz M, Elsheikh AH, Ewees AA (2019) A review on meta-heuristics methods for estimating parameters of solar cells. J Power Sources 435:126683

    Article  Google Scholar 

  39. Oliva D, Nag S, Abd Elaziz M, Sarkar U, Hinojosa S (2019) Multilevel thresholding by fuzzy type ii sets using evolutionary algorithms. Swarm Evol Comput 51:100591

    Article  Google Scholar 

  40. Pan W, Shen X, Liu B (2013) Cluster analysis: unsupervised learning via supervised learning with a non-convex penalty. J Mach Learn Res 14(7):1865

    MathSciNet  MATH  Google Scholar 

  41. Panagant N, Pholdee N, Bureerat S, Kaen K, Yildiz AR, Sait SM (2020) Seagull optimization algorithm for solving real-world design optimization problems. Mater Test 62(6):640–644. https://doi.org/10.3139/120.111529

    Article  Google Scholar 

  42. Potter MA, Jong KAD (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29. https://doi.org/10.1162/106365600568086

    Article  Google Scholar 

  43. Pustokhina IV, Pustokhin DA, Lydia EL, Elhoseny M, Shankar K (2021) Energy efficient neuro-fuzzy cluster based topology construction with metaheuristic route planning algorithm for unmanned aerial vehicles. Comput Netw 196:108214

    Article  Google Scholar 

  44. Rahmati SHA, Zandieh M (2012) A new biogeography-based optimization (bbo) algorithm for the flexible job shop scheduling problem. Int J Adv Manuf Technol 58(9):1115–1129

    Article  Google Scholar 

  45. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  46. Rather SA, Sharma N (2017) Gsa-bbo hybridization algorithm. Int J Adv Res Sci Eng 6:596–608

    Google Scholar 

  47. Rodriguez-Esparza E, Zanella-Calzada LA, Oliva D, Heidari AA, Zaldivar D, Pérez-Cisneros M, Foong LK (2020) An efficient harris hawks-inspired image segmentation method. Expert Syst Appl 155:113428

    Article  Google Scholar 

  48. Roy R, George KT (2017) Detecting insurance claims fraud using machine learning techniques. In: 2017 international conference on circuit, power and computing technologies (ICCPCT). IEEE, pp 1–6

  49. Saidala RK, Devarakonda N (2018) Multi-swarm whale optimization algorithm for data clustering problems using multiple cooperative strategies. Int J Intell Syst Appl 10(8):36

    Google Scholar 

  50. Sandgren E (1988) Nonlinear integer and discrete programming in mechanical design. In: International design engineering technical conferences and computers and information in engineering conference, vol 26584. American Society of Mechanical Engineers, pp 95–105

  51. Sarangkum R, Wansasueb K, Panagant N, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2019) Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation. Int J Veh Des 80(2–4):162–175

    Article  Google Scholar 

  52. Shivahare BD, Singh M, Gupta A, Ranjan S, Pareta D, Sahu BM (2021) Survey paper: Whale optimization algorithm and its variant applications. In: 2021 international conference on innovative practices in technology and management (ICIPTM). IEEE, pp 77–82

  53. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun Y, Chen Y (2021) Multi-population improved whale optimization algorithm for high dimensional optimization. Appl Soft Comput 112:107854

    Article  Google Scholar 

  55. Velmurugan T (2012) Efficiency of k-means and k-medoids algorithms for clustering arbitrary data points. Int J Comput Technol Appl 3(5):1758–1764

    Google Scholar 

  56. Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946

    Article  Google Scholar 

  57. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  58. Xiao C, Yu M, Zhang B, Wang H, Jiang C (2020) Discrete component prognosis for hybrid systems under intermittent faults. IEEE Trans Autom Sci Eng

  59. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspir Comput 2(2):78–84

    Article  Google Scholar 

  60. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

  61. Yildiz ABS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2020) Sine-cosine optimization algorithm for the conceptual design of automobile components. Mater Test 62(7):744–748. https://doi.org/10.3139/120.111541

    Article  Google Scholar 

  62. Yıldız AR, Erdaş MU (2021) A new hybrid Taguchi-Salp swarm optimization algorithm for the robust design of real-world engineering problems. Mater Test 63(2):157–162

    Article  Google Scholar 

  63. Yıldız AR, Özkaya H, Yıldız M, Bureerat S, Yıldız B, Sait SM (2020) The equilibrium optimization algorithm and the response surface-based metamodel for optimal structural design of vehicle components. Mater Test 62(5):492–496

    Article  Google Scholar 

  64. Yıldız BS, Patel V, Pholdee N, Sait SM, Bureerat S, Yıldız AR (2021) Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design. Mater Test 63(4):336–340

    Article  Google Scholar 

  65. Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2021) Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng Comput 1–13

  66. Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2021) Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm. Expert Syst 38(3):e12666

    Article  Google Scholar 

  67. Yu M, Xiao C, Zhang B (2020) Event-triggered discrete component prognosis of hybrid systems using degradation model selection. IEEE Trans Ind Electron 68(11):11470–11481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego Oliva or Marco Pérez-Cisneros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The sets of benchmark test functions that are described in Tables 18, 19 and 20, representing the unimodal, multimodal and composite functions. In the column of minimum we have f which is the optimum value of the function and are the optimum positions, the column S is the continuous search space, every function has n dimensions, in this case we performed the experiments using 30, 50 and 100 dimensions.

Table 18 Unimodal test benchmark functions considered in the experiments
Table 19 Multimodal test benchmark functions considered in the experiments
Table 20 Composite test benchmark functions considered in the experiments

Appendix B

1.1 B.1: Gear train design problem

Consider

\(\longrightarrow\)

\(\mathbf {x}=\left[ x_1\ x_2\ x_3\ x_4\right] =\left[ n_A\ n_B\ n_C\ n_D\right] ,\)

Minimize

\(\longrightarrow\)

\(f(\mathbf {x})=\left( \frac{1}{6.931}\ -\frac{x_3x_2}{x_1x_4}\right) ^2,\)

Subject to

\(\longrightarrow\)

\(12\le x_1,x_2,x_3,x_4\le 60\)

1.2 B.2: Pressure vessel design problem

Consider

\(\longrightarrow\)

\(\mathbf {x}=\left[ x_1\ x_2\ x_3\ x_4\right] =\left[ T_s\ T_h\ R\ L\right] ,\)

Minimize

\(\longrightarrow\)

\(f(\mathbf {x})=0.6224x_1x_3x_4+1.7781x_2x_3^2+3.1661x_1^2x_4+19.84x_1^2x_3\) 

Subject to

\(\longrightarrow\)

\(g_1(\mathbf {x})=-x_1+0.0193x_3\le 0,\)

  

\(g_2(\mathbf {x})=-x_3+0.00954x_3\le 0,\)

  

\(g_3(\mathbf {x})=-\pi x_3^2x_4-\frac{4}{3}\pi x_3^3+1296000\le 0,\)

  

\(g_4(\mathbf {x})=x_4-240\le 0\)

Variable Range

\(\longrightarrow\)

\(0\le x_1\le 99 ,\)

  

\(0\le x_2\le 99 ,\)

  

\(10\le x_3\le 200 ,\)

  

\(10\le x_4\le 200\)

1.3 B.3: Tension/compression spring design

Consider

\(\longrightarrow\)

\(\mathbf {x}=\left[ x_1\ x_2\ x_3\right] =\left[ d\ D\ N\right] ,\)

Minimize

\(\longrightarrow\)

\(f(\mathbf {x})=(x_3+2)x_2x_1^2,\)

Subject to

\(\longrightarrow\)

\(g_1(\mathbf {x})=1-\frac{x_2^3x_3}{71785x_1^4}\le 0,\)

  

\(g_2(\mathbf {x})=\frac{4x_2^2-x_1x_2}{12566\left( x_2x_1^3-x_1^4\right) }+\frac{1}{5108x_1^2}\le 0,\)

  

\(g_3(\mathbf {x})=1-\frac{140.45x_1}{x_2^2x_3}\le 0,\)

  

\(g_4(\mathbf {x})=\frac{x_1+x_2}{1.5}-1\le 0\)

Variable Range

\(\longrightarrow\)

\(0.05\le x_1\le 2.00 ,\)

  

\(0.25\le x_2\le 1.30 ,\)

  

\(2.00\le x_3\le 15.0\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, M.A., Oliva, D., Ramos-Michel, A. et al. An improved multi-population whale optimization algorithm. Int. J. Mach. Learn. & Cyber. 13, 2447–2478 (2022). https://doi.org/10.1007/s13042-022-01537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01537-3

Keywords

Navigation