An ELM based local topology preserving hashing | International Journal of Machine Learning and Cybernetics
Skip to main content

An ELM based local topology preserving hashing

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Hashing learning has become one of the most active research areas in computer vision and multimedia information retrieval with the explosively boosted data volume. Mainstream hashing methods adopt a two-stage hashing framework to realize hashing learning. That is, obtain low dimensional embedding and encode binary codes respectively. However, this kind of methods divides the dimensional reduction error and binary encoding loss apart, which is not beneficial to preserve the original data structure. Hence, we propose a local topology preserving hashing (LTPH) method to reduce the dimensional reduction error and binary encoding loss simultaneously. To clearly reveal the original data structure, Local Topology Preserving Embedding (LTPE) algorithm is proposed in this paper. LTPE utilizes the data similarity as well as the local geometry information to construct original data topology, which can effectively detect the original data structure. Nevertheless, LTPH is a transductive method, which is not suitable for large scale applications. Considering the outstanding global approximation ability and fast computation speed of Extreme Learning Machine (ELM), we propose an ELM based local topology preserving hashing (ELMLTPH) method to realize efficient hashing learning for large scale applications. With the facilitation of ELM, original data topology is effectively preserved to hamming space. Extensive image retrieval experiments are conducted on CIFAR, Caltech 101/256, Corel 10K and GIST-1M datasets, which demonstrate the superiority of ELMLTPH compared to several state-of-the-art hashing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lin J, Yin J, Cai Z (2013) A secure and practical mechanism of outsourcing extreme learning machine in cloud computing. IEEE Intell Syst 28(6):35–38

    Google Scholar 

  2. Zhang D, Wang F, Si L (2011) Composite hashing with multiple information sources. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval. ACM, Beijing, pp 225–234

  3. Kong W, Li WJ, Guo M Manhattan hashing for large-scale image retrieval. In: Proceedings of the 35th international ACM SIGIR. ACM, Portland, pp 45–54

  4. Zhong H, Miao C, Shen Z et al (2014) Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings. Neurocomputing 128:285–295

    Article  Google Scholar 

  5. Dridi A, Recupero DR (2017) Leveraging semantics for sentiment polarity detection in social media. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-017-0727-z (Early Access)

    Article  Google Scholar 

  6. Liu W, Wang J, Kumar S et al (2011) Hashing with graphs. In: Proceedings of the 28th international conference on machine learning (ICML-11), IMLS, Bellevue, pp 1–8

  7. Gong Y, Lazebnik S, Gordo A (2013) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. Pattern Anal Mach Intell IEEE Trans 35(12):2916–2929

    Article  Google Scholar 

  8. Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. VLDB 99(6):518–529

    Google Scholar 

  9. Datar M, Immorlica N, Indyk P et al (2004) Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the twentieth annual symposium on computational geometry. ACM, NewYork, pp 253–262

  10. Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: Advances in Neural Information Processing Systems 22, NIPS, Vancouver, pp 1509–1517

  11. Kulis B, Jain P, Grauman K (2009) Fast similarity search for learned metrics. Pattern Anal Mach Intell IEEE Trans 31(12):2143–2157

    Article  Google Scholar 

  12. Jin Z, Li C, Lin Y (2013) Density sensitive hashing. IEEE Trans Cybern 44(8):1362–1371

    Article  Google Scholar 

  13. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. Adv Neural Inform Process Syst, NIPS, Vancouver, pp 1753–1760

  14. Wang J, Kumar S, Chang SF (2012) Semi-supervised hashing for large-scale search. Pattern Anal Mach Intell IEEE Trans 34(12):2393–2406

    Article  Google Scholar 

  15. Irie G, Li Z, Wu XM et al (2014) Locally linear hashing for extracting non-linear manifolds. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, Columbus, pp 2115–2122

  16. Liu Y, Bai X, Yang H (2015) Isometric mapping hashing. Graph-based representations in pattern recognition. Springer, New York, pp 325–334

    Book  Google Scholar 

  17. Gui J, Liu T, Sun Z (2018) Fast supervised discrete hashing. IEEE Trans Pattern Anal Mach Intell 40(2):490–496

    Article  Google Scholar 

  18. Song J, Zhang H, Li X (2018) Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans Image Process 27(7):3210–3221

    Article  MathSciNet  Google Scholar 

  19. Zhao K, Lu H, Mei J (2014) Locality preserving hashing. AAAI, AAAI Press, Québec, pp 2874–2881

  20. Yang L, Lin F, Shenglan L (2018) Global similarity preserving hashing. Soft Comput 22(7):2105–2120

    Article  Google Scholar 

  21. Ng WWY, Lv Y, Zeng Z (2017) Sequential conditional entropy maximization semi-supervised hashing for semantic image retrieval. Int J Mach Learn Cybern 8(2):571–586

    Article  Google Scholar 

  22. Zhang L, He Z, Liu Y (2017) Deep object recognition across domains based on adaptive extreme learning machine. Neurocomputing 239:194–203

    Article  Google Scholar 

  23. Zhang L, Zhang D (2017) Evolutionary cost-sensitive extreme learning machine. IEEE Trans Neural Netw Learn Syst 28(12):3045–3060

    Article  MathSciNet  Google Scholar 

  24. Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821

    Article  MathSciNet  Google Scholar 

  25. Huang GB, Zhu QY, Siew CK (2005) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedinga of the IEEE International Joint Conference on Neural Networks, IEEE, Budapest, pp 985–990

  26. Li MB, Huang GB, Saratchandran P (2005) Letters: fully complex extreme learning machine. Neurocomputing 68(1):306–314

    Article  Google Scholar 

  27. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  28. Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

    Article  Google Scholar 

  29. Chen L, Cui L, Huang R (2016) Bio-inspired neural network with application to license plate recognition: hysteretic ELM approach. Assembly Autom 36(2):172–178

    Article  Google Scholar 

  30. Liu S, Feng L, Liu Y, Wu J, Sun M, Wang W (2017) Robust discriminative extreme learning machine for relevance feedback in image retrieval. Multidimension Syst Signal Process 28(3):1071–1089

    Article  Google Scholar 

  31. Xizhao W, Weipeng C (2018) Non-iterative approaches in training feed-forward neural networks and their applications. Soft Comput. https://doi.org/10.1007/s00500-018-3203-0

    Article  Google Scholar 

  32. Weipeng C, Zhong M, Xizhao W, Shubin C (2017) Improved bidirectional extreme learning machine based on enhanced random search. Memetic Comput. https://doi.org/10.1007/s12293-017-0238-1

    Article  Google Scholar 

  33. Shixin Z, Xizhao W, Liying W (2017) Analysis on fast training speed of extreme learning machine and replacement policy. Int J Wireless Mobile Comput 13(4):314–322

    Article  Google Scholar 

  34. Shuxia L, Xizhao W, Guiqiang Z, Zhou X (2015) Effective algorithms of the Moore-Penrose inverse matrices for extreme learning machine. Intell Data Anal 19(4):743–760

    Article  Google Scholar 

  35. Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 6(3):376–390

    Article  Google Scholar 

  36. Huang GB, Chen L (2007) Letters: Convex incremental extreme learning machine. Neurocomputing 70(16):3056–3062

    Article  Google Scholar 

  37. Huang GB (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  38. Wang X, Wang R, Chen X (2018) Discovering the relationship between generalization and uncertainty by incorporating complexity of classification. IEEE Trans Cybern 48(2):703–715

    Article  Google Scholar 

  39. Wang X, Zhang T, Wang R (2017) Non-iterative deep learning: incorporating restricted boltzmann machine into multilayer random weight neural networks. IEEE Trans Syst Man Cybern Syste. https://doi.org/10.1109/TSMC.2017.2701419 IEEE Early Access Articles)

    Article  Google Scholar 

  40. Wang Z, Wang X (2018) A deep stochastic weight assignment network and its application to chess playing. J Parallel Distrib Computi 117:205–211

    Article  Google Scholar 

  41. Huang Z, Wang X (2018) Sensitivity of data matrix rank in non-iterative training. Neurocomputing 313:386–391

    Article  Google Scholar 

  42. Cao W, Wang X, Zhong M et al (2018) A review on neural networks with random weights. Neurocomputing 275:278–287

    Article  Google Scholar 

  43. Hong Z, Tsang EC, Wang X et al (2017) Monotonic classification extreme learning machine. Neurocomputing 225(C):205–213

    Google Scholar 

  44. Cao J, Chen T, Fan J (2014) Fast online learning algorithm for landmark recognition based on BoW framework. In: Industrial electronics and applications, IEEE, Hangzhou, pp 1163–1168

  45. Huang G, Song S, Gupta JND (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417

    Article  Google Scholar 

  46. Zhang R, Lan Y, Huang GB (2012) Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans Neural Netw Learn Syst 23(2):365–371

    Article  Google Scholar 

  47. Iosifidis A, Tefas A, Pitas I (2013) Minimum class variance extreme learning machine for human action recognition. IEEE Trans Circuits Syst Video Technol 23(11):1968–1979

    Article  Google Scholar 

  48. Zhang L, Liu Y, Deng P (2017) Odor recognition in multiple E-nose systems with cross-domain discriminative subspace learning. IEEE Trans Instrum Measure 66(7):1679–1692

    Article  Google Scholar 

  49. Iosifidis A, Tefas A, Pitas I (2016) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311–324

    Article  Google Scholar 

  50. Shen F, Shen C, Shi Q et al (2013) Inductive hashing on manifolds. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, Portland, pp 1562–1569

  51. Zhang P, Wee CY, Niethammer M, et al (2013) Large deformation image classification using generalized locality-constrained linear coding. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 292–299

    Chapter  Google Scholar 

  52. Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. Pattern Anal Mach Intell IEEE Trans 25(9):1075–1088

    Article  Google Scholar 

  53. Wang JZ, Li J, Wiederhold G (1999) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):171–193

    Google Scholar 

  54. Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70

    Article  Google Scholar 

  55. Jegou H, Douze M, Schmid C (2011) Product quantization for nearest neighbor search. IEEE Trans Pattern Anal Mach Intell 33(1):117–128

    Article  Google Scholar 

  56. Wang H, Feng L, Zhang J (2016) Semantic discriminative metric learning for image similarity measurement. IEEE Trans Multimed 18(8):1579–1589

    Article  Google Scholar 

  57. Qiao H, Zhang P (2013) An explicit nonlinear mapping for manifold learning. IEEE Trans Cybern 43(1):51–63

    Article  Google Scholar 

  58. Qiao H, Peng J-G (2003) A reference model approach to stability analysis of neural networks. IEEE Trans Syst Man Cybern Part B Cybern 33(6):925–936

    Article  Google Scholar 

  59. Zhang L, Wang X, Huang GB et al (2018) Taste Recognition in E-Tongue Using Local Discriminant Preservation Projection. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2018.2789889 (IEEE Early Access Articles)

    Article  Google Scholar 

  60. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  Google Scholar 

  61. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  62. Izenman AJ (2013) Linear discriminant analysis. Modern multivariate statistical techniques. Springer, New York, pp 237–280

    Book  Google Scholar 

  63. Strecha C, Bronstein A, Bronstein M (2012) LDAHash: improved matching with smaller descriptors. IEEE Trans Pattern Anal Mach Intell 34(1):66–78

    Article  Google Scholar 

  64. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  65. Wen Z, Yin W (2013) A feasible method for optimization with orthogonality constraints. Math Program 142(1–2):397–434

    Article  MathSciNet  Google Scholar 

  66. Wong TT, Yang NY (2017) Dependency analysis of accuracy estimates in k-fold cross validation. IEEE Trans Knowl Data Eng 29(11):2417–2427

    Article  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of People’s Republic of China (61370200, 61672130, 61602082) and the Open Program of State Key Laboratory of Software Architecture, Item number SKLSAOP1701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Feng.

Ethics declarations

Conflict of interest

Yang Liu, Lin Feng, Shenglan Liu and Muxin Sun declare that they have no conflict of interest.

Human and animals participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Feng, L., Liu, S. et al. An ELM based local topology preserving hashing. Int. J. Mach. Learn. & Cyber. 10, 2691–2708 (2019). https://doi.org/10.1007/s13042-018-0894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0894-6

Keywords