Abstract
Feature extraction is a key problem in face recognition systems. This paper tackles this problem by combining the strength of image descriptor with dimensionality reduction technology. So, this paper proposes a new efficient face recognition method-local descriptor margin projections (LDMP). Firstly, we propose a novel local descriptor for face image representation. At this step, an effective and simple metric approach named gray value accumulating distance (GAD) is firstly proposed. And then a novel local descriptor based on GAD is presented to capture the local structure information between central pixel and its neighbors effectively. Secondly, we propose a dimensionality reduction algorithm named maximum margin learning projections (MMLP) which can obtain the low-dimensional and discriminative feature. Finally, experimental results on the Yale, Extended Yale B, PIE, AR and LFW face databases show the effectiveness of the proposed method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zhao WY, Chellappa R, Phillips PJ et al (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–459
Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86
Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs Fisherfaces:recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720
Yuan C, Sun X, Rui L (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Communications. 13(7):60–65
Xia Z, Wang X, Zhang L et al (2016) A Privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11):1–1. doi: 10.1109/TIFS.2016.2590944
Yan SC, Xu D, Zhang BY et al (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51
Tenenbaum JB, Silva VD, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323
Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326
He XF, Yan SC, Hu YX et al (2003) Learning a locality preserving subspace for visual recognition. In: Proceedings of the 9th IEEE International Conference on Computer Vision, pp 385–392
He XF, Yan SC, Hu YX et al (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340
Lai ZH, Wong WK, Xu Y et al (2015) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735
Yang M, Zhu P, Liu F et al (2015) Joint representation and pattern learning for robust face recognition. Neurocomputing 168:70–80
Huang P, Chen CK, Tang ZM et al (2014) Discriminant similarity and variance preserving projection for feature extraction. Neurocomputing 139:180–188
Lai ZH, Xu Y, Jin Z et al (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circuits Syst Video Technol 24(10):1651–1662
Shi X, Guo Z, Lai ZH (2014) Face recognition by sparse discriminant analysis via joint L2,1-norm minimization. Pattern Recognit 47(7):2447–2453
Huang P, Chen CK, Tang ZM et al (2014) Local maximal marginal discriminant embedding for face recognition. J Visual Commun Image Represent 25(2):296–305
Chen Y, Xu XH (2014) Supervised orthogonal discriminant subspace projects learning for face recognition. Neural Netw 50:33–36
Huang P, Chen CK, Tang ZM et al (2014) Feature extraction using local structure preserving discriminant analysis. Neurocomputing 140:104–113
Wan MH, Li M, Yang GW et al (2014) Feature extraction using two-dimensional maximum embedding difference. Inf Sci 274:55–69
Cai D, He XF, Zhou K et al (2007) Locality sensitive discriminant analysis. In: Proceedings of the IEEE International Conference on Artificial Intelligence, pp 708–713
Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041
Zhang BC, Gao YS, Zhao SQ et al (2010) Local derivative pattern versus local binary pattern:face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544
Zhang WC, Shan SG, Gao W et al (2005) Local Gabor binary pattern histogram sequence (LGBPHS):a novel non-statistical model for face representation and recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision, pp 786–791
Tan XY, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650
[25] Wolf L, Hassner T, Taigman Y (2011) Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans Pattern Anal Mach Intell 33(10):1978–1990
Liu CJ, Wechsler H (2002) Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476
Pang Y, Yuan Y, Li X (2008) Gabor-based region covariance matrices for face recognition. IEEE Trans Circuits Syst Video Technol 18(7):989–993
Zhang BC, Shan SG, Chen XL et al (2007) Histogram of gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68
Lei Z, Liao SC, Pietikainen M et al (2011) Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans Image Process 20(1):247–256
Gai S, Yang GW, Wan MH (2013) Employing quaternion wavelet transform for banknote classification. Neurocompuing 118(8):171–178
Gu B, Sheng VS, Tay KY et al (2014) Incremental support vector learning for ordinal regression[J]. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416
Wen X, Shao L, Xue Y et al (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406
Gu B, Sheng VS (2016) A robust regularization path algorithm for ν-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796
Qian JJ, Yang J, Gao GW (2013) Discriminative histograms of local dominant orientation (D-HLDO) for biometric image feature extraction. Pattern Recognit 46(10):2724–2739
Nouyed I, Poon B, Amin MA et al (2015) A study on the discriminating characteristics of Gabor phase-face and an improved method for face recognition. Int J Mach Learn Cyber 7(6):1115–1130
Lai ZH, Xu Y, Chen QC et al (2014) Multilinear Sparse Principal Component Analysis. IEEE Trans Neural Netw Learn Syst 25(10):1942–1950
Lai ZH, Wong WK, Xu Y et al (2014) Sparse alignment for robust tensor learning. IEEE Trans Neural Netw Learn Syst 25(10):1779–1792
Seo HJ, Milanfar P (2010) Training-Free, generic object detection using locally adaptive regression kernels. IEEE Trans Pattern Anal Mach Intell 32(9):1688–1704
[39] Seo HJ, Milanfar P (2011) Face verification using the LARK representation. IEEE Trans Inf Forensics Secur 6(4):1275–1286
Liao SC, Zhu XX, Lei Z et al (2007) Learning multi-scale block local binary patterns for face recognition. In: Proceedings of the IEEE International Conference on Biometrics vol 4642, pp 828–837
Qian JJ, Yang J, Xu Y (2013) Local structure-based image decomposition for feature extraction with applications to face recognition. IEEE Trans Image Process 22(9):3591–3603
Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J Mach Learn Res 8(5):1027–1061
Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698
Gross R, Matthews I, Cohn J et al (2007) The cmu multi-pose, illumination, and expression (multi-pie) face database. Technical report #07–08. Carnegie Mellon University Robotics Institute
Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report #24
Huang GB, Ramesh M, Berg T et al (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report# 07–49. University of Massachusetts, Amherst
Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. Computer Vision—ACCV 2009. Springer, Berlin, pp 88–97
Acknowledgements
This work is supported by the National Natural Science Fund of China (Grant Nos. 61503195, 61462064, 61203243,61402231, 61603192 and 61272077), the Natural Science Fund of Jiangsu Province (Grant No. BK20161580), the University Natural Science Fund of Jiangsu Province of China (Grant No. 15KJB520018, 16KJB520020 and 12KJA63001), the Project Funded by China Postdoctoral Science Foundation (Grant No. 2016M600433), the Project Funded by PAPD and CICAEET, and the Project supported by the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology) (Grant No. 30916014107).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, Z., Huang, P., Wan, M. et al. Local descriptor margin projections (LDMP) for face recognition. Int. J. Mach. Learn. & Cyber. 9, 1387–1398 (2018). https://doi.org/10.1007/s13042-017-0652-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-017-0652-1