A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety | International Journal of Machine Learning and Cybernetics Skip to main content
Log in

A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Coal mine safety has been a pressing issue for many years, and it is a constant and non-negligible problem that must be addressed during any coal mining process. This paper focuses on developing an innovative multi-criteria decision-making (MCDM) method to address coal mine safety evaluation problems. Because lots of uncertain and fuzzy information exists in the process of evaluating coal mine safety, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to depict the evaluation information necessary to the process. Furthermore, the handling of qualitative information requires the effective support of quantitative tools, and the linguistic scale function (LSF) is therefore employed to deal with linguistic intuitionistic information. First, the distance, a valid ranking method, and Frank operations are proposed for LIFNs. Subsequently, the linguistic intuitionistic fuzzy Frank improved weighted Heronian mean (LIFFIWHM) operator is developed. Then, a linguistic intuitionistic MCDM method for coal mine safety evaluation is constructed based on the developed operator. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by a sensitivity analysis and comparison with other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wei CF, Pei Z, Li HM (2012) An induced OWA operator in coal mine safety evaluation. J Comput Syst Sci 78(4):997–1005

    Article  MathSciNet  MATH  Google Scholar 

  2. Wei CF, Yuan RF (2010) A decision-making method based on linguistic aggregation operators for coal mine safety evaluation. Intelligent Systems and Knowledge Engineering (ISKE), 2010 International Conference on 17–20

  3. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–356

    Article  MATH  Google Scholar 

  4. Peng HG, Zhang HY, Wang JQ (2016) Probability multi-valued neutrosophic sets and its application in multi-criteria group decision-making problems. Neural Comput Appl. doi:10.1007/s00521-016-2702-0

    Google Scholar 

  5. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20:87–96

    Article  MATH  Google Scholar 

  6. Urena R, Chiclana F, Fujita H, Herrera-Viedma E (2015) Confidence-consistency driven group decision making approach with incomplete reciprocal intuitionistic preference relations. Knowl Based Syst 89:86–96

    Article  Google Scholar 

  7. Yu SM, Wang J, Wang JQ (2016) An extended TODIM approach with intuitionistic linguistic numbers. Int Trans Oper Res. doi:10.1111/itor.12369

    Google Scholar 

  8. Torra V, Narukawa Y (2009) On hesitant fuzzy sets and decision. In: The 18th IEEE International Conference on Fuzzy Systems, p 1378–1382

  9. Rodríguez RM, Bedregal B, Bustince H, Dong YC, Farhadinia B, Kahraman C, Martinez L, Torra V, Xu YJ, Xu ZS, Herrera F (2016) A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. Inf Fusion 29:89–97

    Article  Google Scholar 

  10. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    Article  MathSciNet  MATH  Google Scholar 

  11. Martínez L, Ruan D, Herrera F, Herrera-Viedma E, Wang PP (2009) Linguistic decision making:tools and applications. Inf Sci 179(14):2297–2298

    Article  Google Scholar 

  12. Liu PD, Wang Y (2016) The aggregation operators based on the 2-dimension uncertain linguistic information and their application to decision making. Int J Mach Learn Cybern 7(6):1057–1074

    Article  Google Scholar 

  13. Peng HG, Wang JQ (2016) Hesitant uncertain linguistic Z-numbers and their application in multi-criteria group decision-making problems. Int J Fuzzy Syst. doi:10.1007/s40815-016-0257-y

    Google Scholar 

  14. Morente-Molinera JA, Pérez IJ, Ureña MR, Herrera-Viedma E (2015) Building and managing fuzzy ontologies with heterogeneous linguistic information. Knowl Based Syst 88(C):154–164

    Article  Google Scholar 

  15. Xu ZS (2004) A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf Sci 166(1–4):19–30

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu ZS (2004) Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf Sci 168(1):171–184

    Article  MATH  Google Scholar 

  17. Xu ZS (2006) An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with uncertain multiplicative linguistic preference relations. Decis Support Syst 41(2):488–499

    Article  Google Scholar 

  18. Wei GW, Zhao XF, Lin R, Wang HJ (2013) Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl Math Modell 37(7):5277–5285

    Article  MathSciNet  Google Scholar 

  19. Tian ZP, Wang J, Wang JQ, Zhang HY (2016) A likelihood-based qualitative flexible approach with hesitant fuzzy linguistic information. Cogn Comput 8(4):670–683

    Article  Google Scholar 

  20. Zhang Z, Wu C (2014) Hesitant fuzzy linguistic aggregation operators and their applications to multiple attribute group decision making. J Intell Fuzzy Syst 26(5):2185–2202

    MathSciNet  MATH  Google Scholar 

  21. Zhou H, Wang JQ, Zhang HY (2016) Multi-criteria decision-making approaches based on distance measures for linguistic hesitant fuzzy sets. J Oper Res Soc. doi:10.1057/jors.2016.41

    Google Scholar 

  22. Wang J, Wang JQ, Zhang HY (2016) A likelihood-based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics outsourcing. Comput Ind Eng 99:287–299

    Article  Google Scholar 

  23. Chen ZC, Liu PH, Pei Z (2015) An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int J Comput Intell Syst 8(4):747–760

    Article  Google Scholar 

  24. Lawry J (2001) An alternative approach to computing with words. Int J Uncertain Fuzziness Knowl Based Syst 9(1):3–16

    Article  MathSciNet  MATH  Google Scholar 

  25. Massanet S, Riera JV, Torrens J, Herrera-Viedma E (2014) A new linguistic computational model based on discrete fuzzy numbers for computing with words. Inf Sci 258(3):277–290

    Article  MathSciNet  MATH  Google Scholar 

  26. Morente-Molinera JA, Pérez IJ, Ureña MR (2015) On multi-granular fuzzy linguistic modeling in group decision making problems: a systematic review and future trends. Knowl Based Syst 74:49–60

    Article  Google Scholar 

  27. Zhou SM, Chiclana F, John RI (2008) Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets Syst 159(24):3281–3296

    Article  MathSciNet  MATH  Google Scholar 

  28. Türkşen IB (2002) Type 2 representation and reasoning for CWW. Fuzzy Sets Syst 127(1):17–36

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang HY, Ji P, Wang JQ, Chen XH (2016) A neutrosophic normal cloud and its application in decision-making. Cogn Comput 8(4):649–669

    Article  Google Scholar 

  30. Wang JQ, Peng JJ, Zhang HY, Liu T, Chen XH (2015) An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis Negot 24(1):171–192

    Article  Google Scholar 

  31. Herrera F, Martínez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8(6):746–752

    Article  Google Scholar 

  32. Wang JH, Hao JY (2006) A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 14(3):435–445

    Article  Google Scholar 

  33. Dong YC, Xu Y, Yu S (2009) Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model. IEEE Trans Fuzzy Syst 17(6):1366–1378

    Article  Google Scholar 

  34. Dong YC, Zhang GQ, Hong WC, Yu S (2013) Linguistic computational model based on 2-tuples and intervals. IEEE Trans Fuzzy Syst 21(6):1006–1018

    Article  Google Scholar 

  35. Wang JQ, Wu JT, Wang J, Zhang HY, Chen XH (2014) Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf Sci 288(1):55–72

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang MX, Wang JQ (2016) An evolving Takagi–Sugeno model based on aggregated trapezium clouds for anomaly detection in large datasets. J Intell Fuzzy Syst. doi:10.3233/JIFS-16254

    Google Scholar 

  37. Tian ZP, Wang J, Wang JQ, Zhang HY (2016) Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int J Mach Learn Cybern. doi:10.1007/s13042-016-0552-9

    Google Scholar 

  38. Beliakov G, Pradera A, Calvo T (2007) Aggregation functions:a guide for practitioners. Springer, Heidelberg

    MATH  Google Scholar 

  39. Liu PD, Shi LL (2015) Some neutrosophic uncertain linguistic number Heronian mean operators and their application to multi-attribute group decision making. Neural Comput Appl. doi:10.1007/s00521-015-2122-6

    Google Scholar 

  40. Yu DJ (2013) Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl Soft Comput 13(2):1235–1246

    Article  MathSciNet  Google Scholar 

  41. Frank MJ (1979) On the simultaneous associativity of F (x,y) and x + y − F (x,y). Aequ Math 19(1):194–226

    Article  MATH  Google Scholar 

  42. Ji P, Wang JQ, Zhang HY (2016) Frank prioritized Bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third party logistics. Neural Comput Appl. doi:10.1007/s00521-016-2660-6

    Google Scholar 

  43. Zhang X, Liu PD, Wang YM (2015) Multiple attribute group decision making methods based on intuitionistic fuzzy frank power aggregation operators. J Intell Fuzzy Syst 29(5):2235–2246

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang ZM (2016) Interval-valued intuitionistic fuzzy Frank aggregation operators and their applications to multiple attribute group decision making. Neural Comput Appl. doi:10.1007/s00521-015-2143-1

    Google Scholar 

  45. Qin JD, Liu XW, Pedrycz W (2015) Frank aggregation operators and their application to hesitant fuzzy multiple attribute decision making. Appl Soft Comput 41:428–452

    Article  Google Scholar 

  46. Dong YC, Herrera-Viedma E (2015) Consistency-driven automatic methodology to set interval numerical scales of 2-tuple linguistic term sets and its use in the linguistic GDM with preference relations. IEEE Trans Cybern 45(4):780–792

    Article  Google Scholar 

  47. Dong YC, Li CC, Xu YF, Gu X (2015) Consensus-based group decision making under multi-granular unbalanced 2-tuple linguistic preference relations. Group Decis Negot 24(2):217–242

    Article  Google Scholar 

  48. Dong YC, Chen X, Liang HM, Li CC (2016) Dynamics of linguistic opinions formation in bounded confidence model. Inf Fusion 32:52–61

    Article  Google Scholar 

  49. Bao GY, Lian XL, He M, Wang LL (2010) Improved two-tuple linguistic representation model based on new linguistic evaluation scale. Control Decis 25(5):780–784

    MathSciNet  Google Scholar 

  50. Kahneman D, Tversky A (1979) Prospect theory:an analysis of decision under risk. Econometrica 47(2):263–291

    Article  MATH  Google Scholar 

  51. Dong Y, Li CC, Herrera F (2016) Connecting the linguistic hierarchy and the numerical scale for the 2-tuple linguistic model and its use to deal with hesitant unbalanced linguistic information. Inf Sci 367–368:259–278

    Article  Google Scholar 

  52. Dong YC, Xu YF, Li HY, Feng B (2010) The OWA-based consensus operator under linguistic representation models using position indexes. Eur J Oper Res 203(2):455–463

    Article  MATH  Google Scholar 

  53. Li CC, Dong YC, Herrera F, Herrera-Viedma E, Martínez L (2017) Personalized individual semantics in computing with words for supporting linguistic group decision making. An application on consensus reaching. Inf Fusion 33(C):29–40

    Google Scholar 

  54. Szmidt E, Kacprzyk J (2009) Ranking of intuitionistic fuzzy alternatives in a multi-criteria decision making problem. NAFIPS 2009–2009 Annual Meeting of the North American Fuzzy Information Processing Society

  55. Dong YC, Zhang HJ, Herrera-Viedma E (2016) Integrating experts’ weights generated dynamically into the consensus reaching process and its applications in managing non-cooperative behaviors. Decis Support Syst 84:1–15

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and anonymous reviewers for their very helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (Nos. 71571193 and 71271218) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2016zzts213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-fei Cheng.

Appendix

Appendix

Proof of Theorem.

In the following, Theorem 1 will be proved utilizing the mathematical induction on \(n\).

Proof

Firstly, the following equation needs to be proved.

$$\begin{gathered} \mathop { \oplus _{F} }\limits_{{i = 1,j = i}}^{n} w_{i} w_{j} \cdot _{F} ((\phi _{i} )^{{\wedge_{F}} p} \otimes _{F} (\phi _{j} )^{{\wedge_{F} q}} ) = \left( {f^{{* - 1}} \left( {1 - \log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{n} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right., \hfill \\ {\kern 1pt} \left. {f^{{* - 1}} \left( {\log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{n} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right). \hfill \\ \end{gathered}$$
(12)
  1. 1.

    For n = 2, the following equation can be calculated easily.

$$\begin{gathered} \mathop { \oplus _{F} }\limits_{{i = 1,j = i}}^{2} w_{i} w_{j} \cdot _{F} ((\phi _{i} )^{{\wedge_{F} p}} \otimes _{F} (\phi _{j} )^{{\wedge_{F} q}} ) = \left( {f^{{* - 1}} \left( {1 - \log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{2} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right., \hfill \\ {\kern 1pt} \left. {f^{{* - 1}} \left( {\log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{2} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right). \hfill \\ \end{gathered}$$
  1. 2.

    If Eq. (11) holds for \(n=k\), there is

$$\begin{gathered} \mathop { \oplus _{F} }\limits_{{i = 1,j = i}}^{k} w_{i} w_{j} \cdot _{F} ((\phi _{i} )^{{\wedge_{F} p}} \otimes _{F} (\phi _{j} )^{{\wedge_{F} q}} ) = \left( {f^{{* - 1}} \left( {1 - \log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{k} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right., \hfill \\ {\kern 1pt} \left. {f^{{* - 1}} \left( {\log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{k} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right). \hfill \\ \end{gathered}$$
(13)

Then, when \(n=k+1\), the following equation can be obtained

$$\underset{i=1,j=i}{\overset{k+1}{\mathop{{{\oplus }_{F}}}}}\,{{w}_{i}}{{w}_{j}}{{\cdot }_{F}}({{({{\phi }_{i}})}^{{{\hat{\ }}_{F}}p}}{{\otimes }_{F}}{{({{\phi }_{j}})}^{{{\hat{\ }}_{F}}q}})=\underset{i=1,j=i}{\overset{k}{\mathop{{{\oplus }_{F}}}}}\,{{w}_{i}}{{w}_{j}}{{\cdot }_{F}}({{({{\phi }_{i}})}^{{{\hat{\ }}_{F}}p}}{{\otimes }_{F}}{{({{\phi }_{j}})}^{{{\hat{\ }}_{F}}q}}){{\oplus }_{F}}\underset{i=1}{\overset{k+1}{\mathop{{{\oplus }_{F}}}}}\,{{w}_{i}}{{w}_{k+1}}{{\cdot }_{F}}({{({{\phi }_{i}})}^{{{\hat{\ }}_{F}}p}}{{\otimes }_{F}}{{({{\phi }_{k+1}})}^{{{\hat{\ }}_{F}}q}}).$$
(14)

According to the operations of LIFNs, the following result can be calculated.

$$\begin{gathered} \mathop { \oplus _{F} }\limits_{{i = 1}}^{{k + 1}} w_{i} w_{{k + 1}} \cdot _{F} ((\phi _{i} )^{{\wedge_{F} p}} \otimes _{F} (\phi _{{k + 1}} )^{{\wedge_{F} q}} ) = \left( {f^{{* - 1}} \left( {1 - \log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1}}^{{k + 1}} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{{k + 1}} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{{k + 1}} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{{k + 1}} }} } } \right)} \right)} \right., \hfill \\ {\kern 1pt} \left. {f^{{* - 1}} \left( {\log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1}}^{{k + 1}} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} 1 - (s_{{v_{{k + 1}} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} 1 - (s_{{v_{{k + 1}} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{{k + 1}} }} } } \right)} \right)} \right). \hfill \\ \end{gathered}$$
(15)

Equation (15) can be easily proved by utilizing the mathematical induction on \(k+1\), and the proof is omitted here.

Thus, by utilizing Eqs. (13) and (15), Eq. (14) can be converted into

$$\begin{gathered} \mathop { \oplus _{F} }\limits_{{i = 1,j = i}}^{{k + 1}} w_{i} w_{j} \cdot _{F} ((\phi _{i} )^{{\wedge_{F} p}} \otimes _{F} (\phi _{j} )^{{\wedge_{F} q}} ) = \mathop { \oplus _{F} }\limits_{{i = 1,j = i}}^{k} w_{i} w_{j} \cdot _{F} ((\phi _{i} )^{{\wedge_{F} p}} \otimes _{F} (\phi _{j} )^{{\wedge_{F} q}} ) \oplus _{F} \mathop { \oplus _{F} }\limits_{{i = 1}}^{{k + 1}} w_{i} w_{{k + 1}} \cdot _{F} ((\phi _{i} )^{{\wedge_{F} p}} \otimes _{F} (\phi _{{k + 1}} )^{{\wedge_{F} q}} ) \hfill \\ = \left( {f^{{* - 1}} \left( {1 - \log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{{k + 1}} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{f^{*} (s_{{u_{i} }} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right., \hfill \\ {\kern 1pt} \left. {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} f^{{* - 1}} \left( {\log _{\lambda } \left( {1 + (\lambda - 1)\prod\limits_{{i = 1,j = i}}^{{k + 1}} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{1 - f^{*} (s_{{v_{i} }} )}} - 1)^{p} (\lambda ^{{1 - f^{*} (s_{{v_{j} }} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)} \right)} \right). \hfill \\ \end{gathered}$$

That is, Eq. (12) also holds for \(n=k+1.\) Thus, Eq. (12) is true for all \(n\).

Then, by using Eq. (12), Eq. (6) can be calculated easily based on the operations of LIFNs, and Eq. (7) can be eventually acquired. Therefore, the proof Theorem 1 is completed.

Proof of Theorem 3.

Proof

Let \(LIFFIWH{{M}^{p,q}}({{a}_{1}},{{a}_{2}},...,{{a}_{n}})=({{s}_{u(a)}},{{s}_{v(a)}})\)and \(LIFFIWH{{M}^{p,q}}({{b}_{1}},{{b}_{2}},...,{{b}_{n}})=({{s}_{u(b)}},{{s}_{v(b)}})\). Since \({{f}^{*}}\), \({{f}^{*-1}}\) and \({{\log }_{\lambda }},(\lambda>1)\) is a strictly monotonously increasing and continuous function, and \({{s}_{u({{a}_{i}})}}\ge {{s}_{u({{b}_{i}})}}\) and \({{s}_{u({{a}_{j}})}}\ge {{s}_{u({{b}_{j}})}}\) for all \(i,j=1,2,...,n\), then the following inequalities can be obtained.

$$\begin{aligned} {\kern 1pt} f^{*} (s_{{u(a_{i} )}} ) \ge f^{*} (s_{{u(b_{i} )}} ){\kern 1pt} ,f^{*} (s_{{u(a_{j} )}} ) \ge f^{*} (s_{{u(b_{j} )}} ) &\Rightarrow (\lambda ^{{f^{*} (s_{{u(a_{i} )}} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u(a_{j} )}} )}} - 1)^{q} \ge (\lambda ^{{f^{*} (s_{{u(b_{i} )}} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u(b_{j} )}} )}} - 1)^{q} \hfill \\ & \Rightarrow \left( {\prod\limits_{{i = 1,j = i}}^{n} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{f^{*} (s_{{u(a_{i} )}} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u(a_{j} )}} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{f^{*} (s_{{u(a_{i} )}} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u(a_{j} )}} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)^{k} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} & \le \left( {\prod\limits_{{i = 1,j = i}}^{n} {\left( {\frac{{(\lambda - 1)^{{p + q}} - (\lambda ^{{f^{*} (s_{{u(b_{i} )}} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u(b_{j} )}} )}} - 1)^{q} }}{{(\lambda - 1)^{{p + q}} + (\lambda - 1)(\lambda ^{{f^{*} (s_{{u(b_{i} )}} )}} - 1)^{p} (\lambda ^{{f^{*} (s_{{u(b_{j} )}} )}} - 1)^{q} }}} \right)^{{w_{i} w_{j} }} } } \right)^{k} \hfill \\ & \Rightarrow s_{{u(a)}} \ge s_{{u(b)}} . \hfill \\ \end{aligned}$$

In the same way, the inequality \({{s}_{v(a)}}\le {{s}_{v(b)}}\) can also be obtained. Since \({{s}_{u(a)}}\ge {{s}_{u(b)}}\) and \({{s}_{v(a)}}\le {{s}_{v(b)}}\), then, \(LIFFIWH{{M}^{p,q}}\left( {{a}_{1}},{{a}_{2}},...,{{a}_{n}} \right)\ge LIFFIWH{{M}^{p,q}}\left( {{b}_{1}},{{b}_{2}},...,{{b}_{n}} \right).\)

Proof of Theorem 4.

Proof

Since \({{s}_{u(a)}}\ge {{s}_{{{u}_{i}}}}\) and \({{s}_{v(a)}}\le {{s}_{{{v}_{i}}}}\) for all \(i=1,2,...,n,\) then according to Theorems 2 and 3, we can obtain\(LIFFIWH{{M}^{p,q}}({{\phi }_{1}},{{\phi }_{2}},...,{{\phi }_{n}})\le LIFFIWH{{M}^{p,q}}(a,a,...,a)=a.\) Since \({{s}_{u(b)}}\le {{s}_{{{u}_{i}}}}\) and \({{s}_{v(b)}}\ge {{s}_{{{v}_{i}}}}\) for all \(i=1,2,...,n\), then we can also obtain \(b=LIFFIWH{{M}^{p,q}}(b,b,...,b)\le LIFFIWH{{M}^{p,q}}({{\phi }_{1}},{{\phi }_{2}},...,{{\phi }_{n}})\). Thus, \(b\le LIFFIWH{{M}^{p,q}}({{\phi }_{1}},{{\phi }_{2}},...,{{\phi }_{n}})\le a\) is true.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Hg., Wang, Jq. & Cheng, Pf. A linguistic intuitionistic multi-criteria decision-making method based on the Frank Heronian mean operator and its application in evaluating coal mine safety. Int. J. Mach. Learn. & Cyber. 9, 1053–1068 (2018). https://doi.org/10.1007/s13042-016-0630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0630-z

Keywords

Navigation