Certain types of fuzzy sets in a fuzzy graph | International Journal of Machine Learning and Cybernetics Skip to main content
Log in

Certain types of fuzzy sets in a fuzzy graph

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we introduce certain types of fuzzy sets in a fuzzy graph including fuzzy dominating set, fuzzy minimal dominating set, fuzzy independent dominating set and fuzzy irredundant set. We describe these concepts with examples and develop the relationship between them. We also describe some interesting properties of fuzzy dominating set, fuzzy minimal dominating set, fuzzy independent dominating set and fuzzy irredundant set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akram M (2011) Bipolar fuzzy graphs. Inf Sci 181:5548–5564

    Article  MathSciNet  MATH  Google Scholar 

  2. Akram M, Dudek WA (2011) Interval-valued fuzzy graphs. Comput Math Appl 61:289–299

    Article  MathSciNet  MATH  Google Scholar 

  3. Akram M, Davvaz B (2012) Strong intuitionistic fuzzy graphs. Filomat 26:177–196

    Article  MathSciNet  MATH  Google Scholar 

  4. Akram M, Dudek WA (2013) Intuitionistic fuzzy hypergraphs with applications. Inf Sci 218:182–193

    Article  MathSciNet  MATH  Google Scholar 

  5. Auer DB, Harary F, Nieminen J, Suffel CL (1983) Domination alteration sets in graphs. Discret Math 47:153–161

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollobas B, Cockayne EJ (1979) Graph theoretic parameters concerning domination, independence and irredundance. J Graph Theory 3:241–250

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhattacharya P (1987) Some remarks on fuzzy graphs. Pattern Recognit Lett 6:297–302

    Article  MATH  Google Scholar 

  8. Bhutani KR, Moderson J, Rosenfeld A (2004) On degrees of end nodes and cut nodes in fuzzy graphs. Iran J Fuzzy Syst 1(1):57–64

    MathSciNet  Google Scholar 

  9. Fulman J (1993) A note on the characterization of domination perfect graphs. J Graph Theory 17:47–51

    Article  MathSciNet  MATH  Google Scholar 

  10. Haynes T, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graph. Marcel Deckker, New York

    MATH  Google Scholar 

  11. Kauffman A (1973) Introduction a la Theorie des Sous-emsembles Flous, Masson et Cie, vol 1

  12. Mordeson JN, Peng CS (1994) Operations on fuzzy graphs. Inf Sci 79:159–170

    Article  MathSciNet  MATH  Google Scholar 

  13. Nagoorgani A, Chandrasekaran VT (2006) Domination in fuzzy graph. Adv Fuzzy Sets Syst 1(1):17–26

    MathSciNet  MATH  Google Scholar 

  14. Nagoorgani A, Vadivel P (2007) Fuzzy independent dominating set. Adv Fuzzy Sets Syst 2(1):99–108

    MathSciNet  MATH  Google Scholar 

  15. Nagoorgani A, Vadivel P (2009) Relations between the parameters of independent domination and irredundance in fuzzy graph. Int J Algorithms Comput Math 2(1):15–19

    Google Scholar 

  16. Nagoorgani A, Vijayalakshmi P (2011) Domination critical nodes in fuzzy graph. Int J Math Sci Engg Appl 5(1):295–301

    MathSciNet  Google Scholar 

  17. Rashmanlou H, Pal M (2013) Antipodal interval-valued fuzzy graphs. Int J Appl Fuzzy Sets Artif Intell 3:107–130

    Google Scholar 

  18. Rashmanlou H, Jun YB (2013) Complete interval-valued fuzzy graphs. Ann of Fuzzy Math Inform 6(3):677–687

    MathSciNet  MATH  Google Scholar 

  19. Rashmanlou H, Pal M (2013) Balanced interval-valued fuzzy graph. J Phys Sci 17:43–57

    MathSciNet  Google Scholar 

  20. Rosenfeld A (1975) Fuzzy graphs. In: Zadeh LA, Fu KS, Shimura M (eds) Fuzzy sets and their applications. Academic Press, New York

    Google Scholar 

  21. Somasundaram A, Somasundaram S (1998) Domination in fuzzy graphs. Pattern Recognit Lett 19(9):787–791

    Article  MATH  Google Scholar 

  22. Wang X, Wang Y, Xu XF, Ling W, Yeung D (2011) A new approach to fuzzy rule generation: fuzzy extension matrix. Fuzzy Sets Syst 123(3):291–306

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang X, Hong J (1999) Learning optimization in simplifying fuzzy rules. Fuzzy Sets Syst 106(3):349–356

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu W, Sun W, Liu Y, Zhang W (2013) Fuzzy rough set models over two universes. Int J Mach Learn Cybern 4(6):631–645

    Article  Google Scholar 

  25. Yang X, Yang Y (2013) Independence of axiom sets on intuitionistic fuzzy rough approximation operators. Int J Mach Learn Cybern 4(5):505–513

    Article  Google Scholar 

  26. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Professor Xi-Zhao Wang, the editor in chief, and the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NagoorGani, A., Akram, M. & Vijayalakshmi, P. Certain types of fuzzy sets in a fuzzy graph. Int. J. Mach. Learn. & Cyber. 7, 573–579 (2016). https://doi.org/10.1007/s13042-014-0267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-014-0267-8

Keywords

Navigation