Trigonometric mutation and successful-parent-selection based adaptive asynchronous differential evolution | Journal of Ambient Intelligence and Humanized Computing Skip to main content

Advertisement

Log in

Trigonometric mutation and successful-parent-selection based adaptive asynchronous differential evolution

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Asynchronous differential evolution (ADE) supports parallel optimization and effective exploration. The updation in population is done immediately when a vector with better fitness is found in ADE algorithm. The working of ADE and Differential Evolution (DE) is similar except the instant population updation feature and asynchronous nature. In this paper, we have integrated ADE with successful parent-selecting (SPS) framework and trigonometric mutation to enhance the performance. Additionally, the control parameters are updated in an adaptive manner to support better exploration as well as exploitation. The proposed algorithm is named as SPS embedded adaptive ADE with trigonometric mutation (SPS-AADE-TM). The modified mutation operation and adaptive parameters can increase the population diversity and the convergence speed. The parameter adaptation feature can automatically obtain the appropriate values of control parameters to enhance the robustness of SPS-AADE-TM. The proposed algorithm is tested over twenty-five widely used bench-mark functions and four engineering design problems. Two nonparametric statistical tests are also carried out to validate the performance of SPS-AADE-TM. The simulation results show that the proposed work provides promising results and outperforms the competitive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data will be made available upon request.

References

  • Alinaghian M, Tirkolaee EB, Dezaki ZK, Hejazi SR, Ding W (2021) An augmented Tabu search algorithm for the green inventory-routing problem with time windows. Swarm Evol Comput 60:100802

    Article  Google Scholar 

  • Arora JS (2004) Introduction to optimum design. Elsevier

    Book  Google Scholar 

  • Asafuddoula M, Ray T, Sarker R (2014) An adaptive hybrid differential evolution algorithm for single objective optimization. Appl Math Comput 231:601–618

    MathSciNet  MATH  Google Scholar 

  • Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Tech Rep.

  • Awad NH, Ali MZ, Suganthan PN, Reynolds RG (2017) CADE: a hybridization of cultural algorithm and differential evolution for numerical optimization. Inf Sci 378:215–241

    Article  Google Scholar 

  • Azqandi MS, Delavar M, Arjmand M (2020) An enhanced time evolutionary optimization for solving engineering design problems. Eng Comput 36(2):763–781

    Article  Google Scholar 

  • Bairathi D, Gopalani D (2018) Opposition based salp swarm algorithm for numerical optimization. In: International Conference on Intelligent Systems Design and Applications (pp. 821–831). Springer, Cham.

  • Basavegowda HS, Dagnew G (2020) Deep learning approach for microarray cancer data classification. CAAI Trans Intell Technol 5(1):22–33

    Article  Google Scholar 

  • Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Methods Eng 21(9): 1583–1599

  • Bilal PM, Zaheer H, Garcia-Hernandez L, Abraham A (2020) Differential evolution: a review of more than two decades of research. Eng Appl Artif Intell 90:103479

    Article  Google Scholar 

  • Bilel N, Mohamed N, Zouhaier A, Lotfi R (2019) An efficient evolutionary algorithm for engineering design problems. Soft Comput 23(15):6197–6213

    Article  Google Scholar 

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  • Chen K, Zhou F, Liu A (2018a) Chaotic dynamic weight particle swarm optimization for numerical function optimization. Knowl-Based Syst 139:23–40

    Article  Google Scholar 

  • Chen K, Zhou F, Wang Y, Yin L (2018b) An ameliorated particle swarm optimizer for solving numerical optimization problems. Appl Soft Comput 73:482–496

    Article  Google Scholar 

  • Choi TJ, Lee Y (2018) Asynchronous differential evolution with selfadaptive parameter control for global numerical optimization. In: MATEC Web of Conferences (Vol. 189, p. 03020). EDP Sciences.

  • Chourasia S, Sharma H, Singh M, Bansal JC (2019) Global and local neighborhood based particle swarm optimization. In: Harmony Search and Nature Inspired Optimization Algorithms (pp. 449–460). Springer, Singapore

  • Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  • Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  MATH  Google Scholar 

  • Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203

    Article  Google Scholar 

  • Coello Coello CA (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civil Eng Syst 17(4):319–346

    Article  Google Scholar 

  • Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput Oper Res 67:155–173

    Article  MathSciNet  MATH  Google Scholar 

  • Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  MATH  Google Scholar 

  • Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  • Di Carlo M, Vasile M, Minisci E (2020) Adaptive multi-population inflationary differential evolution. Soft Comput 24(5):3861–3891

    Article  Google Scholar 

  • Duan M, Yang H, Liu H, Chen J (2019) A differential evolution algorithm with dual preferred learning mutation. Appl Intell 49(2):605–627

    Article  Google Scholar 

  • Eiben ÁE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  • Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2011) Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans Evol Comput 15(1):99–119

    Article  Google Scholar 

  • Fakhouri HN, Hudaib A, Sleit A (2020) Hybrid particle swarm optimization with sine cosine algorithm and nelder-mead simplex for solving engineering design problems. Arab J Sci Eng 45(4):3091–3109

    Article  Google Scholar 

  • Fan HY, Lampinen J (2003) A trigonometric mutation operation to differential evolution. J Global Optim 27(1):105–129

    Article  MathSciNet  MATH  Google Scholar 

  • Gandomi AH, Yang XS (2011) Benchmark problems in structural optimization. In: Computational optimization, methods and algorithms (pp. 259–281). Springer, Berlin, Heidelberg

  • Ghosh S, Shivakumara P, Roy P, Pal U, Lu T (2020) Graphology based handwritten character analysis for human behaviour identification. CAAI Trans Intell Technol 5(1):55–65

    Article  Google Scholar 

  • Guo SM, Yang CC, Hsu PH, Tsai JSH (2014) Improving differential evolution with a successful-parent-selecting framework. IEEE Trans Evol Comput 19(5):717–730

    Article  Google Scholar 

  • Guo SM, Tsai JSH, Yang CC, Hsu PH (2015) A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In: 2015 IEEE congress on evolutionary computation (CEC) (pp. 1003–1010). IEEE

  • Gupta B, Tiwari M, Lamba SS (2019) Visibility improvement and mass segmentation of mammogram images using quantile separated histogram equalisation with local contrast enhancement. CAAI Trans Intell Technol 4(2):73–79

    Article  Google Scholar 

  • Gupta S, Deep K, Moayedi H, Foong LK, Assad A (2020) Sine cosine grey wolf optimizer to solve engineering design problems. Eng Comput: 1–27.

  • He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  • Huang FZ, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  • Kaleka KK, Kaur A, Kumar V (2020) A conceptual comparison of metaheuristic algorithms and applications to engineering design problems. Int J Intell Inf Database Syst 13(2–4):278–306

    Google Scholar 

  • Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier-based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Article  Google Scholar 

  • Karafotias G, Hoogendoorn M, Eiben ÁE (2014) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27:155–182

    Article  MATH  Google Scholar 

  • Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput 23(5):1699–1722

    Article  Google Scholar 

  • Khalilpourazari S, Pasandideh SHR (2019) Sine–cosine crow search algorithm: theory and applications. Neural Comput Appl: 1–18.

  • Kizilay D, Tasgetiren MF, Oztop H, Kandiller L, Suganthan PN (2020) A differential evolution algorithm with q-learning for solving engineering design problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–8). IEEE

  • Konar A, Saha S (2018) Differential evolution based dance composition. In: Gesture Recognition (pp. 225–241). Springer, Cham.

  • Koyuncu H, Ceylan R (2019) A PSO based approach: scout particle swarm algorithm for continuous global optimization problems. J Comput Design Eng 6(2):129–142

    Article  Google Scholar 

  • Lai X, Zhou Y (2019) An adaptive parallel particle swarm optimization for numerical optimization problems. Neural Comput Appl 31(10):6449–6467

    Article  Google Scholar 

  • Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933

    Article  MATH  Google Scholar 

  • Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Conv Manag 205(112443)

  • Liang JJ, Qu BY, Suganthan PN, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 29, 625–640

  • Lin GH, Zhang J, Liu ZH (2018) Hybrid particle swarm optimization with differential evolution for numerical and engineering optimization. Int J Autom Comput 15(1):103–114

    Article  Google Scholar 

  • Lin A, Sun W, Yu H, Wu G, Tang H (2019) Global genetic learning particle swarm optimization with diversity enhancement by ring topology. Swarm Evol Comput 44:571–583

    Article  Google Scholar 

  • Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462

    Article  MATH  Google Scholar 

  • Liu Z, Nishi T (2020) Multipopulation ensemble particle swarm optimizer for engineering design problems. Math Prob Eng

  • Luo J, Shi B (2019) A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl Intell 49(5):1982–2000

    Article  Google Scholar 

  • Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  • Meng Z, Pan JS (2019) HARD-DE: Hierarchical archive based mutation strategy with depth information of evolution for the enhancement of differential evolution on numerical optimization. IEEE Access 7:12832–12854

    Article  Google Scholar 

  • Meng Z, Chen Y, Li X (2020a) Enhancing differential evolution with novel parameter control. IEEE Access 8:51145–51167

    Article  Google Scholar 

  • Meng Z, Yang C, Li X, Chen Y (2020b) Di-DE: depth information-based differential evolution with adaptive parameter control for numerical optimization. IEEE Access 8:40809–40827

    Article  Google Scholar 

  • Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican international conference on artificial intelligence (pp. 652–662). Springer, Berlin, Heidelberg

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  • Noman N, Bollegala D, Iba H (2011) An adaptive differential evolution algorithm. In: 2011 IEEE Congress of Evolutionary Computation (CEC) (pp. 2229–2236). IEEE.

  • Omran MG, Salman A, Engelbrecht AP (2005) Self-adaptive differential evolution. In: International conference on computational and information science (pp. 192–199). Springer, Berlin, Heidelberg.

  • Osterland S, Weber J (2019) Analytical analysis of single-stage pressure relief valves. Int J Hydromech 2(1):32–53

    Article  Google Scholar 

  • Pan JS, Liu N, Chu SC (2020a) A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path planning. IEEE Access 8:17691–17712

    Article  Google Scholar 

  • Pan JS, Yang C, Meng F, Chen Y, Meng Z (2020b) A parameter adaptive DE algorithm on real-parameter optimization. J Intell Fuzzy Syst 38(1):1–12

    Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2008) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  • Rajpurohit J, Sharma TK, Abraham A, Vaishali A (2017) Glossary of metaheuristic algorithms. Int J Comput Inf Syst Ind Manag Appl 9:181–205

    Google Scholar 

  • Rather SA, Bala PS (2020) Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems. World J Eng 17(1):97–114

    Article  Google Scholar 

  • Salehinejad H, Rahnamayan S, Tizhoosh HR (2017) Micro-differential evolution: diversity enhancement and a comparative study. Appl Soft Comput 52:812–833

    Article  Google Scholar 

  • Sallam KM, Sarker RA, Essam DL, Elsayed SM (2015) Neurodynamic differential evolution algorithm and solving CEC2015 competition problems. In: 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 1033–1040). IEEE.

  • Santos R, Borges G, Santos A, Silva M, Sales C, Costa JC (2018) A semi-autonomous particle swarm optimizer based on gradient information and diversity control for global optimization. Appl Soft Comput 69:330–343

    Article  Google Scholar 

  • Shehab M, Khader AT, Laouchedi M, Alomari OA (2019) Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization. J Supercomput 75(5):2395–2422

    Article  Google Scholar 

  • Stanovov V, Akhmedova S, Semenkin E (2019) Selective pressure strategy in differential evolution: exploitation improvement in solving global optimization problems. Swarm Evol Comput 50:100463

    Article  Google Scholar 

  • Storn R, Price K (1995) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces (Tech. Rep.), Berkeley, CA. TR-95–012.

  • Sun G, Yang B, Yang Z, Xu G (2019) An adaptive differential evolution with combined strategy for global numerical optimization. Soft Comput: 1–20.

  • Sun P, Liu H, Zhang Y, Tu L, Meng Q (2021) An intensify atom search optimization for engineering design problems. Appl Math Model 89:837–859

    Article  Google Scholar 

  • Talatahari S, Azizi M (2020) Optimization of constrained mathematical and engineering design problems using chaos game optimization. Comput Ind Eng 145:106560

    Article  Google Scholar 

  • Tam JH, Ong ZC, Ismail Z, Ang BC, Khoo SY (2019) A new hybrid GA−ACO−PSO algorithm for solving various engineering design problems. Int J Comput Math 96(5):883–919

    Article  MathSciNet  MATH  Google Scholar 

  • Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE congress on evolutionary computation (pp. 71–78). IEEE.

  • Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658–1665). IEEE.

  • Thangaraj R, Pant M, Abraham A (2009) A simple adaptive differential evolution algorithm. In: 2009 world congress on nature and biologically inspired computing (NaBIC) (pp. 457–462). IEEE.

  • Tian M, Gao X (2019) Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Inf Sci 478:422–448

    Article  Google Scholar 

  • Tirkolaee EB, Goli A, Weber GW (2020) Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Trans Fuzzy Syst 28(11):2772–2783. https://doi.org/10.1109/TFUZZ.2020.2998174

    Article  Google Scholar 

  • Tong L, Dong M, Jing C (2018) An improved multi-population ensemble differential evolution. Neurocomputing 290:130–147

    Article  Google Scholar 

  • Vaishali Sharma TK (2016) Asynchronous differential evolution with convex mutation. In: Proceedings of fifth international conference on soft computing for problem solving (pp. 915–928). Springer, Singapore.

  • Vaishali Sharma TK, Abraham A, Rajpurohit J (2018a) Trigonometric probability tuning in asynchronous differential evolution. In: Soft Computing: Theories and Applications (pp. 267–278). Springer, Singapore.

  • Vaishali Sharma TK, Abraham A, Rajpurohit J (2018b) Enhanced asynchronous differential evolution using trigonometric mutation. In: Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016), AISC (Vol. 614), (pp. 386–397). Springer, Cham

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  • Wang SL, Ng TF, Morsidi F (2018) Self-adaptive ensemble based differential evolution. Int J Mach Learn Comput 8(3):286–293

    Article  Google Scholar 

  • Wang S, Li Y, Yang H (2019) Self-adaptive mutation differential evolution algorithm based on particle swarm optimization. Appl Soft Comput 81:105496

    Article  Google Scholar 

  • Wang R, Yu H, Wang G, Zhang G, Wang W (2019) Study on the dynamic and static characteristics of gas static thrust bearing with micro-hole restrictors. Int J Hydromech 2(3):189–202

    Article  Google Scholar 

  • Wiens T (2019) Engine speed reduction for hydraulic machinery using predictive algorithms. Int J Hydromech 2(1):16–31

    Article  Google Scholar 

  • Xiang WL, Meng XL, An MQ, Li YZ, Gao MX (2015) An enhanced differential evolution algorithm based on multiple mutation strategies. Comput Intell Neurosci 2015:285730

    Article  Google Scholar 

  • Zhabitskaya E, Zhabitsky M (2011) Asynchronous differential evolution. In: International Conference on Mathematical Modeling and Computational Physics (pp. 328–333). Springer, Berlin, Heidelberg.

  • Zhabitsky M (2016) Comparison of the asynchronous differential evolution and jade minimization algorithms. In: EPJ Web of Conferences (Vol. 108, p. 02048). EDP Sciences.

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  • Zhang X, Zou D, Shen X (2018) A novel simple particle swarm optimization algorithm for global optimization. Mathematics 6(12):287

    Article  MATH  Google Scholar 

  • Zhao S, Wang X, Chen L, Zhu W (2014) A novel self-adaptive differential evolution algorithm with population size adjustment scheme. Arab J Sci Eng 39(8):6149–6174

    Article  Google Scholar 

  • Zhao F, Shao Z, Wang J, Zhang C (2017) A hybrid optimization algorithm based on chaotic differential evolution and estimation of distribution. Comput Appl Math 36(1):433–458

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng LM, Zhang SX, Tang KS, Zheng SY (2017) Differential evolution powered by collective information. Inf Sci 399:13–29

    Article  Google Scholar 

  • Zhu W, Tang Y, Fang JA, Zhang W (2013) Adaptive population tuning scheme for differential evolution. Inf Sci 223:164–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Kumar Yadav.

Ethics declarations

Conflict of interest

The authors declare no competitive interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, V., Yadav, A.K., Kaur, M. et al. Trigonometric mutation and successful-parent-selection based adaptive asynchronous differential evolution. J Ambient Intell Human Comput 13, 5829–5846 (2022). https://doi.org/10.1007/s12652-021-03269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03269-8

Keywords