Abstract
Understanding activity patterns in office environments is important in order to increase workers’ comfort and productivity. This paper proposes an automated system for discovering activity patterns of multiple persons in a work environment using a network of cheap low-resolution visual sensors (900 pixels). Firstly, the users’ locations are obtained from a robust people tracker based on recursive maximum likelihood principles. Secondly, based on the users’ mobility tracks, the high density positions are found using a bivariate kernel density estimation. Then, the hotspots are detected using a confidence region estimation. Thirdly, we analyze the individual’s tracks to find the starting and ending hotspots. The starting and ending hotspots form an observation sequence, where the user’s presence and absence are detected using three powerful Probabilistic Graphical Models (PGMs). We describe two approaches to identify the user’s status: a single model approach and a two-model mining approach. We evaluate both approaches on video sequences captured in a real work environment, where the persons’ daily routines are recorded over 5 months. We show how the second approach achieves a better performance than the first approach. Routines dominating the entire group’s activities are identified with a methodology based on the Latent Dirichlet Allocation topic model. We also detect routines which are characteristic of persons. More specifically, we perform various analysis to determine regions with high variations, which may correspond to specific events.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- \(\left( x',y'\right)\) :
-
Tracked position
- \(f'\) :
-
Probability density function of tracked positions
- B :
-
Kernel function in \(f'\)
- \(\mathbf {H}\) :
-
Bandwidth matrix in \(f'\)
- \(({x'}^{(m)},{y'}^{(m)})\) :
-
Position in cluster m
- m :
-
Cluster index
- L :
-
Number of clusters
- \(K^{(m)}\) :
-
Number of positions in cluster m
- \(\mathbf {U}^{(m)}\) :
-
Positions matrix
- \(\mathbf {C}^{(m)}\) :
-
Covariance matrix of clustered positions
- \(\lambda _{1}^{(m)}\), \(\lambda _{2}^{(m)}\) :
-
Eigenvalues of the covariance matrix \(\mathbf {C}^{(m)}\)
- \(\rho\) :
-
Correlation coefficient
- \(\sigma _{{x'}^{(m)}}\) :
-
Standard deviation of clustered \({x'}^{(m)}\) position
- \(\sigma _{{y'}^{(m)}}\) :
-
Standard deviation of clustered \({y'}^{(m)}\) position
- A :
-
Ellipse confidence level
- \(\mathbf {V}^{(m)}\) :
-
Eigenvectors matrix
- \(\mathbf {D}^{(m)}\) :
-
Diagonal matrix
- \(\theta ^{(m)}\) :
-
Rotation angel of the ellipse
- S :
-
Start of hotspot
- E :
-
End of hotspot
- T :
-
Track with start hotspot S and end hotspot E
- I :
-
Number of positions in track T
- \((g_{x}^{(m)},g_{y}^{(m)})\) :
-
Center of hotspot (cluster) m
- F :
-
Hotspot threshold
- \(\mathbf {x}_t\) :
-
Feature vector at time instant t
- \(\mathbf {x}_{1:T}\) :
-
Sequence of observations
- \(\mathbf {y}_{1:T}\) :
-
Sequence of states
- T :
-
Number of time steps
- \(\hat{N}\) :
-
Number of persons
- Q :
-
Number of states
- \(p(\mathbf {x}_{1:T},y)\) :
-
Joint distribution of \(\mathbf {x}_{1:T}\) and y
- \(\gamma\), \(\delta\) :
-
Potential functions
- \(\epsilon\) :
-
Actual potential
- f :
-
Feature function
- \(p(\mathbf {y} \mid \mathbf {x})\) :
-
Conditional probability of \(\mathbf {y}\) given \(\mathbf {x}\)
- \(Z_{x}\) :
-
Normalization function
- N :
-
Pattern length
- e :
-
Word in a document (presence status)
- d :
-
Document of words (presence status sequence)
- z :
-
Topic (activity pattern)
- K :
-
Number of topics
- G :
-
Number of constructed words
- M :
-
Number of documents
- V :
-
Vocabulary of words
- \(\theta\) :
-
Matrix of day-specific mixture weights
- \(\Phi\) :
-
Matrix of word-specific mixture weights
- \(\alpha\) :
-
Per-document activity pattern distributions hyperparameter
- \(\beta\) :
-
Per-activity word distribution hyperparameter
- MAE:
-
Mean absolute error
- \(v_r\) :
-
Estimated presence duration for hour r
- \({v'}_r\) :
-
Actual presence duration for hour r
- \(\hat{H}\) :
-
Number of hours
- RAE:
-
Relative absolute error
- \(\xi\) :
-
Training corpus model
- \(G_m\) :
-
Length of the document m
References
Aztiria A (2010) Learning frequent behaviours of the users in intelligent environments. J Ambient Intell Smart Environ 2(4):435–436. doi:10.3233/AIS-2010-0084
Baggenstoss PM (2001) A modified baum-welch algorithm for hidden markov models with multiple observation spaces. IEEE Trans Speech Audio Process 9(4):411–416. doi:10.1109/89.917686
Bickford M (2005) Stress in the workplace: a general overview of the causes, the effects, and the solutions. Canadian Mental Health Association Newfoundland and Labrador Division, pp 1–3
Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
Bo NB, Deboeverie F, Eldib M, Guan J, Xie X, Niño J, Van Haerenborgh D, Slembrouck M, Van de Velde S, Steendam H et al (2014) Human mobility monitoring in very low resolution visual sensor network. Sensors 14(11):20,800–20,824. doi:10.3390/s141120800
Camilli M, Kleihorst R (2011) Demo: Mouse sensor networks, the smart camera. In: Fifth ACM/IEEE International Conference on Distributed Smart Cameras, pp 1–3. doi:10.1109/ICDSC.2011.6042944
Castanedo F, de Ipia DL, Aghajan HK, Kleihorst R (2014) Learning routines over long-term sensor data using topic models. Expert Syst 31(4):365–377. doi:10.1111/exsy.12033
Chen CW, Aghajan H (2011) Multiview social behavior analysis in work environments. In: Fifth ACM/IEEE International Conference on Distributed Smart Cameras, pp 1–6. doi:10.1109/ICDSC.2011.6042910
Chen CW, Aztiria A, Aghajan H (2011a) Learning human behaviour patterns in work environments. In: CVPR 2011 WORKSHOPS, pp 47–52. doi:10.1109/CVPRW.2011.5981696
Chen CW, Aztiria A, Allouch SB, Aghajan H (2011b) Understanding the influence of social interactions on individuals behavior pattern in a work environment. In: International Workshop on Human Behavior Understanding, Springer, pp 146–157. doi:10.1007/978-3-642-25446-8_16
Chen CW, Ugarte RC, Wu C, Aghajan H (2011) Discovering social interactions in real work environments. Face Gesture 2011:933–938. doi:10.1109/FG.2011.5771376
Cheng CC, Lee D (2014) Smart sensors enable smart air conditioning control. Sensors 14(6):11,179–11,203. doi:10.3390/s140611179
Cinaz B, Arnrich B, Marca R, Tröster G (2013) Monitoring of mental workload levels during an everyday life office-work scenario. Person Ubiquitous Comput 17(2):229–239. doi:10.1007/s00779-011-0466-1
Cosemans B, Cosmar M, Gründler R, Flemming D, Van den Broek K (2014) Calculating the cost of work-related stress and psychosocial risks. In: Tech. rep., European Agency for Safety and Health at Work, Luxembourg. doi:10.2802/20493
Docobo (2013) Sonopa:social networks for older adults to promote an active life. http://www.sonopa.eu (Online). Accessed 12 May 2016
Duong T, Hazelton ML (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand J Stat 32(3):485–506. doi:10.1111/j.1467-9469.2005.00445.x
Eijckelhof BH, Huysmans MA, Blatter BM, Leider PC, Johnson PW, van Dien JH, Dennerlein JT, van der Beek AJ (2014) Office workers’ computer use patterns are associated with workplace stressors. Appl Ergon 45(6):1660–1667. doi:10.1016/j.apergo.2014.05.013
Eldib M, Bo NB, Deboeverie F, Nino J, Guan J, Van de Velde S, Steendam H, Aghajan H, Philips W (2014a) A low resolution multi-camera system for person tracking. In: IEEE International Conference on Image Processing (ICIP), IEEE, pp 378–382. doi:10.1109/ICIP.2014.7025075
Eldib M, Bo NB, Deboeverie F, Xie X, Philips W, Aghajan H (2014b) Behavior analysis for aging-in-place using similarity heatmaps. In: Proceedings of the International Conference on Distributed Smart Cameras, ACM, ICDSC ’14, vol 6, pp 1–34. doi:10.1145/2659021.2659038
Eldib M, Deboeverie F, Haerenborgh DV, Philips W, Aghajan H (2015a) Detection of visitors in elderly care using a low-resolution visual sensor network. In: Proceedings of the 9th International Conference on Distributed Smart Cameras, ACM, pp 56–61. doi:10.1145/2789116.2789137
Eldib M, Deboeverie F, Philips W, Aghajan H (2015b) Sleep analysis for elderly care using a low-resolution visual sensor network. In: Human Behavior Understanding, Springer, pp 26–38. doi:10.1007/978-3-319-24195-1_3
Eldib M, Deboeverie F, Philips W, Aghajan H (2016a) Behavior analysis for elderly care using a network of low-resolution visual sensors. J Electron Imaging 25(4):041,003–041,003. doi:10.1117/1.JEI.25.4.041003
Eldib M, Deboeverie F, Philips W, Aghajan H (2016b) Towards more efficient use of office space. In: Proceedings of the 10th International Conference on Distributed Smart Camera, ACM, pp 37–43. doi:10.1145/2967413.2967424
Eldib M, Zhang T, Deboeverie F, Philips W, Aghajan H (2016c) A data fusion approach for identifying lifestyle patterns in elderly care. In: Active and Assisted Living: Technologies and Applications, Healthcare Technologies, Institution of Engineering and Technology, pp 81–102. doi:10.1049/PBHE006E_ch5
EU-OSHA (2013a) Campaign guide managing stress and psychosocial risks at work. https://www.healthy-workplaces.eu/en/campaign-materials/guide (Online). Accessed 12 May 2016
EU-OSHA (2013b) European opinion poll on occupational safety and health. In: Tech. rep. doi:10.2802/55505
Farrahi K, Gatica-Perez D (2011) Discovering routines from large-scale human locations using probabilistic topic models. ACM Trans Intell Syst Technol 2(1):3:1–3:27. doi:10.1145/1889681.1889684
Griffiths TL, Steyvers M (2004) Finding scientific topics. Proc Natl Acad Sci 101(suppl 1):5228–5235. doi:10.1073/pnas.0307752101
Hamid R, Maddi S, Johnson A, Bobick A, Essa I, Isbell C (2009) A novel sequence representation for unsupervised analysis of human activities. Artif Intell 173(14):1221–1244. doi:10.1016/j.artint.2009.05.002
Healey JA, Picard RW (2005) Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transport Syst 6(2):156–166. doi:10.1109/TITS.2005.848368
Huynh T, Fritz M, Schiele B (2008) Discovery of activity patterns using topic models. In: Proceedings of the 10th International Conference on Ubiquitous Computing, ACM, UbiComp ’08, pp 10–19. doi:10.1145/1409635.1409638
iMinds (2013) Little sister: low-cost monitoring for care and retail. https://www.iminds.be/en/projects/littlesister (Online). Accessed 12 May 2016
Jaramillo P, Amft O (2013) Improving energy efficiency through activity-aware control of office appliances using proximity sensing-a real-life study. In: IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE, pp 664–669. doi:10.1109/PerComW.2013.6529576
Kim E, Helal S, Cook D (2010) Human activity recognition and pattern discovery. IEEE Pervasive Comput 9(1):48–53. doi:10.1109/MPRV.2010.7
Lafferty J, McCallum A, Pereira F et al (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the eighteenth international conference on machine learning, ICML. Morgan Kaufmann Publishers Inc., vol 1, pp 282–289
Lancaster HO, Seneta E (1969) Chi-square distribution. Wiley Online Library. doi:10.1002/0470011815.b2a15018
Liao W, Zhang W, Zhu Z, Ji Q (2005) A real-time human stress monitoring system using dynamic bayesian network. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)—Workshops, pp 70–70. doi:10.1109/CVPR.2005.394
Liu DC, Nocedal J (1989) On the limited memory bfgs method for large scale optimization. Math Prog 45(1):503–528. doi:10.1007/BF01589116
Milczarek M, Rial-González E, Schneider E (2009) OSH [Occupational safety and health] in figures: stress at work-facts and figures. Office for Official Publications of the European Communities
Milenkovic M, Amft O (2013) An opportunistic activity-sensing approach to save energy in office buildings. In: Proceedings of the fourth international conference on Future energy systems, ACM, pp 247–258. doi:10.1145/2487166.2487194
Mrazovac B, Bjelica MZ, Teslic N, Papp I (2011) Towards ubiquitous smart outlets for safety and energetic efficiency of home electric appliances. In: 2011 IEEE International Conference on Consumer Electronics—Berlin (ICCE-Berlin), pp 322–326. doi:10.1109/ICCE-Berlin.2011.6031795
Okada Y, Yoto TY, Suzuki T, Sakuragawa S, Sugiura T (2013) Wearable ecg recorder with acceleration sensors for monitoring daily stress: Office work simulation study. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 4718–4721. doi:10.1109/EMBC.2013.6610601
Oliver N, Horvitz E (2005) A comparison of hmms and dynamic bayesian networks for recognizing office activities. In: Proceedings of the 10th International Conference on User Modeling, UM’05, pp 199–209. doi:10.1007/11527886_26
Oliver N, Horvitz E, Garg A (2002) Layered representations for human activity recognition. In: Multimodal Interfaces, 2002. Proceedings. Fourth IEEE International Conference on, IEEE, pp 3–8. doi:10.1109/ICMI.2002.1166960
Oliver N, Garg A, Horvitz E (2004) Layered representations for learning and inferring office activity from multiple sensory channels. Comput Vis Image Underst 96(2):163–180. doi:10.1016/j.cviu.2004.02.004
Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286. doi:10.1109/5.18626
Rish I (2001) An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop on empirical methods in artificial intelligence. IBM New York, vol 3, pp 41–46
Salamone F, Belussi L, Danza L, Ghellere M, Meroni I (2016) An open source smart lamp for the optimization of plant systems and thermal comfort of offices. Sensors 16(3):338. doi:10.3390/s16030338
Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B (Methodol). doi:10.2307/2345597
Si Z, Pei M, Yao B, Zhu SC (2011) Unsupervised learning of event and-or grammar and semantics from video. In: International Conference on Computer Vision, IEEE, pp 41–48. doi:10.1109/ICCV.2011.6126223
Silverman BW (1986) Density estimation for statistics and data analysis, vol 26. CRC Press. doi:10.1007/978-1-4899-3324-9
Simonoff J (1996) Smoothing methods in statistics. Springer, Berlin
Sutton C, McCallum A (2012) An introduction to conditional random fields. Found Trends Mach Learn 4(4):267373. doi:10.1561/2200000013
Tao S, Kudo M, Nonaka H, Toyama J (2011) Person authentication and activities analysis in an office environment using a sensor network. In: International Joint Conference on Ambient Intelligence, Springer, pp 119–127. doi:10.1007/978-3-642-31479-7_19
Teixeira T, Dublon G, Savvides A (2010) A survey of human-sensing: methods for detecting presence, count, location, track, and identity. ENALAB technical report
Varadarajan J, Emonet R, Odobez JM (2013) A sequential topic model for mining recurrent activities from long term video logs. Int J Comp Vis 103(1):100–126. doi:10.1007/s11263-012-0596-6
Wojek C, Nickel K, Stiefelhagen R (2006) Activity recognition and room-level tracking in an office environment. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp 25–30. doi:10.1109/MFI.2006.265608
Xie X, Deboeverie F, Eldib M, Philips W, Aghajan H (2014) Phd forum: Analyzing behaviors patterns of the elderly from low-precision trajectories. In: Proceedings of the International Conference on Distributed Smart Cameras, ACM, ICDSC ’14, vol 2, pp 1–47. doi:10.1145/2659021.2675057
Ziefle M, Rocker C, Holzinger A (2011) Medical technology in smart homes: exploring the user’s perspective on privacy, intimacy and trust. In: IEEE 35th Annual Computer Software and Applications Conference Workshops, pp 410–415. doi:10.1109/COMPSACW.2011.75
Zimmermann P, Guttormsen S, Danuser B, Gomez P (2003) Affective computinga rationale for measuring mood with mouse and keyboard. Int J Occup Saf Ergon 9(4):539–551. doi:10.1080/10803548.2003.11076589
Acknowledgements
This research has been financed by the Belgian National Fund for Scientific Research (FWO Flanders) and Ghent University through the FWO project G.0.398.11.N.10. The evaluation was performed in the context of the projects “LittleSister” and the European AAL project “SONOPA,” financed by the agency for Innovation by Science and Technology (IWT), imec and the EU Ambient Assisted Living programme.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eldib, M., Deboeverie, F., Philips, W. et al. Discovering activity patterns in office environment using a network of low-resolution visual sensors. J Ambient Intell Human Comput 9, 381–411 (2018). https://doi.org/10.1007/s12652-017-0511-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-017-0511-7