PEViz: an in situ progressive visual analytics system for ocean ensemble data | Journal of Visualization Skip to main content

Advertisement

Log in

PEViz: an in situ progressive visual analytics system for ocean ensemble data

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Numerical simulation is crucial in scientific research. Visualizing simulation data helps scientists understand data and discover connections between data. However, the development of supercomputers brings larger amounts of simulation data, which poses huge challenges for visualization: (1) Storing the whole data used for visualization is hard under the limitation of I/O and storage, making visualization technology impractical; (2) the post-processing visual analysis mode wastes computation resources and reduces analysis efficiency. In this work, we present an in situ progressive visual analytics system, PEViz, which contains the back-end in situ processing and the interactive front-end interface. The in situ processes using real-time analysis and visualization reduce data storage, leading to a smaller data scale for visualization. The visual analytic interface has four aspect views: the parameters view, the statistics views of the ensemble, the one-moment view of all members, and the sequence view of a single member. While the simulation analytics programs are still running, the progressive analytic system allows scientists to explore data space, such as early analysis and interactively ending abnormal analysis. In addition, the system assists users in processing analytical tasks through real-time visualization and abstracting knowledge of the focused object. We present two case studies to evaluate the effectiveness of the system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afzal S, Hittawe MM, Ghani S, Jamil T, Knio O, Hadwiger M, Hoteit I (2019) The state of the art in visual analysis approaches for ocean and atmospheric datasets. In: Computer graphics forum, vol 38, Wiley Online Library, pp 881–907

  • Bird RB (2002) Transport phenomena. Appl Mech Rev 55(1):R1–R4

    Article  Google Scholar 

  • Biswas A, Lin G, Liu X, Shen H-W (2017) Visualization of time-varying weather ensembles across multiple resolutions. IEEE Trans Vis Comput Gr 23(1):841–850. https://doi.org/10.1109/TVCG.2016.2598869

    Article  Google Scholar 

  • Bryan K (1969) Climate and the ocean circulation: III. the ocean model. Mon Weather Rev 97(11):806–827

    Article  Google Scholar 

  • Burch M, Ten Brinke KB, Castella A, Peters GKS, Shteriyanov V, Vlasvinkel R (2021) Dynamic graph exploration by interactively linked node-link diagrams and matrix visualizations. Vis Comput Ind Biomed Art 4(1):1–14

    Article  Google Scholar 

  • Chen H, Zhang S, Chen W, Mei H, Zhang J, Mercer A, Liang R, Qu H (2015) Uncertainty-aware multidimensional ensemble data visualization and exploration. IEEE Trans Vis Comput Gr 21(9):1072–1086

    Article  Google Scholar 

  • Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387

    Article  MathSciNet  Google Scholar 

  • Demir I, Dick C, Westermann R (2014) Multi-charts for comparative 3d ensemble visualization. IEEE Trans Vis Comput Gr 20(12):2694–2703

    Article  Google Scholar 

  • Draycott S, Sellar B, Davey T, Noble D, Venugopal V, Ingram D (2019) Capture and simulation of the ocean environment for offshore renewable energy. Renew Sustain Energy Rev 104:15–29

    Article  Google Scholar 

  • Dutta S, Feige K, Rink K, Zeckzer D (2021) Uncertainty-aware detection and visualization of ocean eddies in ensemble flow fields-a case study of the red sea. In: Workshop on visualisation in environmental sciences (EnvirVis). The Eurographics Association

  • Dutta S, Shen H-W, Chen J-P (2018) In situ prediction driven feature analysis in jet engine simulations. In: 2018 IEEE pacific visualization symposium (PacificVis), IEEE, pp 66–75

  • Ferstl F, Bürger K, Westermann R (2015) Streamline variability plots for characterizing the uncertainty in vector field ensembles. IEEE Trans Vis Comput Gr 22(1):767–776

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Van Oldenborgh GJ, Stockdale T (2009) Understanding el niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90(3):325–340

    Article  Google Scholar 

  • Guo H, Peterka T, Glatz A (2017) In situ magnetic flux vortex visualization in time-dependent ginzburg-landau superconductor simulations. In: 2017 IEEE pacific visualization symposium (PacificVis), IEEE, pp 71–80

  • Gurgel K-W, Dzvonkovskaya A, Pohlmann T, Schlick T, Gill E (2011) Simulation and detection of tsunami signatures in ocean surface currents measured by hf radar. Ocean Dyn 61(10):1495–1507

    Article  Google Scholar 

  • He W, Wang J, Guo H, Wang K-C, Shen H-W, Raj M, Nashed YS, Peterka T (2019) Insitunet: deep image synthesis for parameter space exploration of ensemble simulations. IEEE Trans Vis Comput Gr 26(1):23–33

    Google Scholar 

  • He W, Liu X, Shen H-W, Collis SM, Helmus JJ (2017) Range likelihood tree: a compact and effective representation for visual exploration of uncertain data sets. In: 2017 IEEE pacific visualization symposium (PacificVis), IEEE, pp 151–160

  • Isern-Fontanet J, García-Ladona E, Font J (2006) Vortices of the mediterranean sea: an altimetric perspective. J Phys Oceanogr 36(1):87–103

    Article  Google Scholar 

  • Jarema M, Demir I, Kehrer J, Westermann R (2015) Comparative visual analysis of vector field ensembles. In: 2015 IEEE conference on visual analytics science and technology (VAST), IEEE, pp 81–88

  • Kesavan S, Bhatia H, Bhatele A, Brink S, Pearce O, Gamblin T, Bremer P-T, Ma K-L (2021) Scalable comparative visualization of ensembles of call graphs. IEEE Trans Vis Comput Gr. https://doi.org/10.1109/TVCG.2021.3129414}

    Article  Google Scholar 

  • Komori N, Ohfuchi W, Taguchi B, Sasaki H, Klein P (2008) Deep ocean inertia-gravity waves simulated in a high-resolution global coupled atmosphere–ocean GCM. Geophys Res Lett 35(4)

  • Kaisler S, Armour F, Espinosa JA et al (2013) Big data: Issues and challenges moving forward. In: 2013 IEEE Hawaii international conference on system sciences, IEEE, pp 995–1004

  • Kumpf A, Tost B, Baumgart M, Riemer M, Westermann R, Rautenhaus M (2017) Visualizing confidence in cluster-based ensemble weather forecast analyses. IEEE Trans Vis Comput Gr 24(1):109–119

    Article  Google Scholar 

  • Li G, Xu J, Zhang T, Shan G, Shen H-W, Wang K-C, Liao S, Lu Z (2020) Distribution-based particle data reduction for in-situ analysis and visualization of large-scale n-body cosmological simulations. In: 2020 IEEE pacific visualization symposium (PacificVis), IEEE, pp 171–180

  • Lu X, Li G, Yang B, Liu J, Shan G (2022) Streamflow: a visual analysis system for 2d streamlines based on workflow mining technique. J Vis 25(2):307–323

    Article  Google Scholar 

  • Marzocchi A, Jansen MF (2017) Connecting antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys Res Lett 44(12):6286–6295

    Article  Google Scholar 

  • Okubo A (1970) Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. In: Deep sea research and oceanographic abstracts, vol 17, Elsevier, pp 445–454

  • Porchetta S, Muñoz-Esparza D, Munters W, van Beeck J, van Lipzig N (2021) Impact of ocean waves on offshore wind farm power production. Renew Energy 180:1179–1193

    Article  Google Scholar 

  • Sakhaee E, Entezari A (2016) A statistical direct volume rendering framework for visualization of uncertain data. IEEE Trans Vis Comput Gr 23(12):2509–2520

    Article  Google Scholar 

  • Toye H, Zhan P, Gopalakrishnan G, Kartadikaria AR, Huang H, Knio O, Hoteit I (2017) Ensemble data assimilation in the red sea: sensitivity to ensemble selection and atmospheric forcing. Ocean Dyn 67(7):915–933

    Article  Google Scholar 

  • Wang K-C, Lu K, Wei T-H, Shareef N, Shen H-W (2017) Statistical visualization and analysis of large data using a value-based spatial distribution. In: 2017 IEEE Pacific Visualization Symposium (PacificVis), IEEE, pp 161–170

  • Weiss J (1991) The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys D Nonlinear Phenom 48(2–3):273–294

    Article  MathSciNet  MATH  Google Scholar 

  • Woodring J, Petersen M, Schmeißer A, Patchett J, Ahrens J, Hagen H (2015) In situ eddy analysis in a high-resolution ocean climate model. IEEE Trans Vis Comput Gr 22(1):857–866

    Article  Google Scholar 

  • Zhan P, Subramanian AC, Yao F, Hoteit I (2014) Eddies in the red sea: a statistical and dynamical study. J Geophys Res Oceans 119(6):3909–3925

    Article  Google Scholar 

  • Zhao Y, Shi J, Liu J, Zhao J, Zhou F, Zhang W, Chen K, Zhao X, Zhu C, Chen W (2021) Evaluating effects of background stories on graph perception. IEEE Trans Vis Comput Gr. https://doi.org/10.1109/TVCG.2021.3107297

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFB1704200) and the National Natural Science Foundation of China (No. 62202446). We would like to thank full professor Zhu Jiang (The Institute of Atmospheric Physics, Chinese Academy of Sciences) and full professor Yan Changxiang(The Institute of Atmospheric Physics, Chinese Academy of Sciences) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 16986 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, G., Yue, R. et al. PEViz: an in situ progressive visual analytics system for ocean ensemble data. J Vis 26, 423–440 (2023). https://doi.org/10.1007/s12650-022-00883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-022-00883-2

Keywords